Modeling strategic sperm allocation: Tailoring the predictions to the species.

Evolution

Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853.

Published: March 2018

Two major challenges exist when empirically testing the predictions of sperm allocation theory. First, the study species must adhere to the assumptions of the model being tested. Unfortunately, the common assumption of sperm allocation models that females mate a maximum of once or twice does not hold for many, if not most, multiply and sequentially mating animals. Second, a model's parameters, which dictate its predictions, must be measured in the study species. Common examples of such parameters, female mating frequency and sperm precedence patterns, are unknown for many species used in empirical tests. Here, we present a broadly applicable model, appropriate for multiply, sequentially mating animals, and test it in three species for which data on all the relevant parameter values are available. The model predicts that relative allocation to virgin females, compared to nonvirgins, depends on the interaction between female mating rate and the sperm precedence pattern: relative allocation to virgins increases with female mating rate under first-male precedence, while the opposite is true under later-male precedence. Our model is moderately successful in predicting actual allocation patterns in the three species, including a cricket in which we measured the parameter values and performed an empirical test of allocation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13423DOI Listing

Publication Analysis

Top Keywords

sperm allocation
12
female mating
12
study species
8
multiply sequentially
8
sequentially mating
8
mating animals
8
sperm precedence
8
three species
8
parameter values
8
relative allocation
8

Similar Publications

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS.

View Article and Find Full Text PDF

Male seminal fluid allocation according to socio-sexual context in the South American fruit fly.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

January 2025

Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), División Control Biológico de Plagas, PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, San Miguel de Tucumán, Tucumán, 4000, Argentina.

During copulation male insects transfer sperm and seminal fluids, including accessory gland proteins (Acps) to females, produced in the accessory glands (AGs). These Acps influence female behavior and physiology, inhibiting sexual receptivity, promoting ovulation and/or oviposition. The theory of ejaculate allocation postulates that production is costly; therefore, males strategically allocate ejaculates based on perception of sperm competition and quality and availability of females.

View Article and Find Full Text PDF

Social circuitry of the mammalian brain can influence male reproductive physiology. This often manifests as plasticity in sperm production or allocation, particularly in response to male-male competition. However, socially mediated testicular plasticity has not been investigated with respect to mating and parental strategy.

View Article and Find Full Text PDF

No evidence for phenotypic condition-dependent ejaculate allocation in response to sperm competition in a seed beetle.

Behav Ecol

November 2024

Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia.

Sperm competition is known to favor the evolution of male traits that confer an advantage in gaining fertilizations when females mate multiply. Ejaculate production can be costly and the strategic allocation of sperm in relation to the sperm competition environment is a taxonomically widespread phenomenon. However, variation among males in their ability to adjust ejaculate allocation has rarely been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!