Cis-regulator runaway and divergence in asexuals.

Evolution

CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.

Published: March 2018

With the advent of new sequencing technologies, the evolution of gene expression is becoming a subject of intensive genomic research, with sparking debates upon the role played by these kinds of changes in adaptive evolution and speciation. In this article, we model expression evolution in species differing by their reproductive systems. We consider different rates of sexual versus asexual reproduction and the different type of parthenogenesis (apomixis and the various modes of automixis). We show that competition for expression leads to two selective processes on cis-regulatory regions that act independently to organism-level adaptation. Coevolution within regulatory networks allows these processes to occur without strongly modifying expression levels. First, cis-regulatory regions such as enhancers evolve in a runaway fashion because they automatically become associated to chromosomes purged from deleterious mutations ("Enhancer Runaway process"). Second, in clonal or nearly clonal species, homologous cis-regulatory regions tend to diverge, which leads to haploidization of expression, when they are sufficiently isolated from one another ("Enhancer Divergence process"). We show how these two processes cooccur and vary depending on the level of outcrossing, gene conversion, mitotic recombination, or recombination in automictic species. This study offers thus a baseline to understand patterns of expression evolution across the diversity of eukaryotic species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13424DOI Listing

Publication Analysis

Top Keywords

cis-regulatory regions
12
expression evolution
8
expression
6
cis-regulator runaway
4
runaway divergence
4
divergence asexuals
4
asexuals advent
4
advent sequencing
4
sequencing technologies
4
evolution
4

Similar Publications

Identification of Gene Family and Expression Analysis of Salt Tolerance in .

Int J Mol Sci

January 2025

Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010010, China.

is one of the typical ecological grass species, characterized by its strong salt tolerance. Hexokinase (HXK) plays a crucial role in plant growth, development, and resistance to abiotic stresses. To understand the function of in the salt tolerance of , this study identified and analyzed the gene family members using the whole-genome data of .

View Article and Find Full Text PDF

Enhanced Transcriptional Activation in Developing Mouse Photoreceptors.

Invest Ophthalmol Vis Sci

January 2025

Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States.

Purpose: Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors.

View Article and Find Full Text PDF

Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.

View Article and Find Full Text PDF

Genome-wide analysis of sugar transporter gene family in and , expression profiling and identification of transcription factors.

Front Plant Sci

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China.

Sugar, the primary product of photosynthesis, is a vital requirement for cell activities. Allocation of sugar from source to sink tissues is facilitated by sugar transporters (ST). These STs belong to the Major Facilitator Superfamily (MFS), the largest family of STs in plants.

View Article and Find Full Text PDF

Sex-determining region Y box 2 (Sox2) is a critical transcription factor for embryogenesis and neural stem and progenitor cell (NSPC) maintenance. While distal enhancers control Sox2 in embryonic stem cells (ESCs), enhancers closer to the gene are implicated in Sox2 transcriptional regulation in neural development. We hypothesize that a downstream enhancer cluster, termed Sox2 regulatory regions 2-18 (SRR2-18), regulates Sox2 transcription in neural stem cells and we investigate this in NSPCs derived from mouse ESCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!