Analysis of Hypoxia and the Hypoxic Response in Tumor Xenografts.

Methods Mol Biol

Institute of Neuropathology, University of Giessen, Giessen, Germany.

Published: January 2019

Solid tumors are often characterized by insufficient oxygen supply (hypoxia), as a result of inadequate vascularization, which cannot keep up with the rapid growth rate of the tumor. Tumor hypoxia is a negative prognostic and predictive factor and is associated with a more aggressive phenotype in various tumor entities. Activation of the hypoxic response in tumors, which is centered around the hypoxia-inducible transcription factors (HIFs), has been causally linked to neovascularization, increased radio- and chemoresistance, altered cell metabolism, genomic instability, increased metastatic potential, and tumor stem cell characteristics. Thus, the hypoxic tumor microenvironment represents a main driving force for tumor progression and a potential target for therapeutic interventions. Here, we describe several methods for the analysis of tumor hypoxia and the hypoxic response in vivo in tumor xenograft models. These methods can be applied to various tumor models, including brain tumor xenotransplants, and allow simultaneously determining the extent and distribution of hypoxia within the tumor, analyzing HIF levels by immunohistochemistry and immunoblot, and quantifying the expression of HIF target genes in tumor tissue. The combination of these approaches provides an important tool to assess the role of the hypoxic tumor microenvironment in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7665-2_25DOI Listing

Publication Analysis

Top Keywords

tumor
14
hypoxic response
12
hypoxia hypoxic
8
tumor hypoxia
8
hypoxic tumor
8
tumor microenvironment
8
hypoxic
5
analysis hypoxia
4
response tumor
4
tumor xenografts
4

Similar Publications

Distinct molecular subtypes of muscle-invasive bladder cancer (MIBC) may show different platinum sensitivities. Currently available data were mostly generated at transcriptome level and have limited comparability to each other. We aimed to determine the platinum sensitivity of molecular subtypes by using the protein expression-based Lund Taxonomy.

View Article and Find Full Text PDF

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.

Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!