As other legume crops, alfalfa cultivation increases the emission of the greenhouse gas nitrous oxide (NO). Since legume-symbiotic nitrogen-fixing bacteria play a crucial role in this emission, it is important to understand the possible impacts of rhizobial domestication on the evolution of denitrification genes. In comparison with the genomes of non-commercial strains, those of commercial alfalfa inoculants exhibit low total genome size, low number of ORFs and high numbers of both frameshifted genes and pseudogenes, suggesting a dramatic loss of genes during bacterial domestication. Genomic analysis focused on denitrification genes revealed that commercial strains have perfectly conserved the nitrate (NAP), nitrite (NIR) and nitric (NOR) reductase clusters related to the production of NO from nitrate but completely lost the nitrous oxide (NOS) reductase cluster (nosRZDFYLX genes) associated with the reduction of NO to gas nitrogen. Based on these results, we propose future screenings for alfalfa-nodulating isolates containing both nitrogen fixation and NO reductase genes for environmental sustainability of alfalfa production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-018-1145-9DOI Listing

Publication Analysis

Top Keywords

nitrous oxide
12
oxide reductase
8
commercial alfalfa
8
alfalfa inoculants
8
loss genes
8
rhizobial domestication
8
denitrification genes
8
genes
7
absence nitrous
4
reductase
4

Similar Publications

Unravelling biotic and abiotic mechanisms of mature compost to alleviate gaseous emissions in kitchen waste composting by metagenomic analysis.

Bioresour Technol

January 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Mature compost can reduce gaseous emissions in composting, but its regulation mechanisms via biotic and abiotic functions are largely unknown. This study used fresh and inactivated mature compost as additives in kitchen waste composting to unveil the relevant mechanisms using metagenomic analysis. Results showed that mature compost reduce gaseous emission by improving physiochemical properties and inoculating functional microbes.

View Article and Find Full Text PDF

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

A new insight on simultaneous water purification and greenhouse gas reduction by constructing sulfur-siderite driven autotrophic denitrification pathways in constructed wetlands.

Water Res

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:

Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.

View Article and Find Full Text PDF

The increasing use of recreational nitrous oxide ([Formula: see text]O) in the Netherlands and its link to traffic accidents highlights the need for reliable detection methods for law enforcement. This study focused on ex vivo detection of [Formula: see text]O in exhaled breath and examining its persistence in the human body. Firstly, a low-cost portable infrared based detector was selected and validated to detect [Formula: see text]O in air.

View Article and Find Full Text PDF

Quantification of denitrification rate in shallow groundwater using the single-well, push-pull test technique.

J Contam Hydrol

January 2025

Environmental Science, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.

Denitrification has been identified as a significant nitrate attenuation process in groundwater systems. Hence, accurate quantification of denitrification rates is consequently important for the better understanding and assessment of nitrate contamination of groundwater systems. There are, however, few studies that have investigated quantification of shallow groundwater denitrification rates using different analytical approaches or assuming different kinetic reaction models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!