Microbial cooperation drives ecological and epidemiological processes and is affected by the ecology and demography of populations. Population density influences the selection for cooperation, with spatial structure and the type of social dilemma, namely public-goods production or self-restraint, shaping the outcome. While existing theories predict that in spatially structured environments increasing population density can select either for or against cooperation, experimental studies with both public-goods production and self-restraint systems have only ever shown that increasing population density favours cheats. We suggest that the disparity between theory and empirical studies results from experimental procedures not capturing environmental conditions predicted by existing theories to influence the outcome. Our study resolves this issue and provides the first experimental evidence that high population density can favour cooperation in spatially structured environments for both self-restraint and public-goods production systems. Moreover, using a multi-trait mathematical model supported by laboratory experiments we extend this result to systems where the self-restraint and public-goods social dilemmas interact. We thus provide a systematic understanding of how the strength of interaction between the two social dilemmas and the degree of spatial structure within an environment affect selection for cooperation. These findings help to close the current gap between theory and experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864216 | PMC |
http://dx.doi.org/10.1038/s41396-017-0016-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!