Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A quantitative analysis has cast doubt over the limited advantages provided by particles for nose-to-brain (NTB) drug delivery. Thus, it is imperative to identify the role of nanovehicles in NTB drug delivery. If nanocarriers are used merely as an option to improve various properties of the drugs or the formulations, it is difficult for them to outperform conventional formulations, such as solutions or gels. However, nanovehicles bring about special features, such as maintenance of the solubilized state of drugs, sustained or delayed release, and enhanced penetration because of surface modifications, all of which lead to enhanced NTB delivery efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2018.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!