Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance.

BMC Genomics

Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, South Korea.

Published: January 2018

Background: Plant stress responses and mechanisms determining tolerance are controlled by diverse sets of genes. Transcription factors (TFs) have been implicated in conferring drought tolerance under drought stress conditions, and the identification of their target genes can elucidate molecular regulatory networks that orchestrate tolerance mechanisms.

Results: We generated transgenic rice plants overexpressing the 4 rice TFs, OsNAC5, 6, 9, and 10, under the control of the root-specific RCc3 promoter. We showed that they were tolerant to drought stress with reduced loss of grain yield under drought conditions compared with wild type plants. To understand the molecular mechanisms underlying this tolerance, we here performed chromatin immunoprecipitation (ChIP)-Seq and RNA-Seq analyses to identify the direct target genes of the OsNAC proteins using the RCc3:6MYC-OsNAC expressing roots. A total of 475 binding loci for the 4 OsNAC proteins were identified by cross-referencing their binding to promoter regions and the expression levels of the corresponding genes. The binding loci were distributed among the promoter regions of 391 target genes that were directly up-regulated by one of the OsNAC proteins in four RCc3:6MYC-OsNAC transgenic lines. Based on gene ontology (GO) analysis, the direct target genes were related to transmembrane/transporter activity, vesicle, plant hormones, carbohydrate metabolism, and TFs. The direct targets of each OsNAC range from 4.0-8.7% of the total number of up-regulated genes found in the RNA-Seq data sets. Thus, each OsNAC up-regulates a set of direct target genes that alter root system architecture in the RCc3:OsNAC plants to confer drought tolerance. Our results provide a valuable resource for functional dissection of the molecular mechanisms of drought tolerance.

Conclusions: Many of the target genes, including transmembrane/transporter, vesicle related, auxin/hormone related, carbohydrate metabolic processes, and transcription factor genes, that are up-regulated by OsNACs act as the cellular components which would alter the root architectures of RCc3:OsNACs for drought tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767043PMC
http://dx.doi.org/10.1186/s12864-017-4367-1DOI Listing

Publication Analysis

Top Keywords

target genes
28
direct target
16
drought tolerance
16
osnac proteins
12
genes
11
transcription factors
8
drought
8
drought stress
8
molecular mechanisms
8
proteins rcc36myc-osnac
8

Similar Publications

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

Background: We aim to comprehensively analyze and validate the prognostic efficacy of tetraspanin 4 (TSPAN4) and several other migrasome-related markers in hepatocellular carcinoma (HCC).

Methods: The expression, diagnostic, and prognostic efficacy of five migrasome-related genes in HCC were analyzed using several databases. Five pairs of adjacent non-tumor tissues and HCC tissues were used to validate the expression.

View Article and Find Full Text PDF

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Background: Mounting evidence suggests that Parkinson's disease (PD) and inflammatory bowel disease (IBD) are closely associated and becoming global health burdens. However, the causal relationships and common pathogeneses between them are uncertain. Furthermore, they are uncurable.

View Article and Find Full Text PDF

Background: Lung cancer has high morbidity and mortality rates, which results in a poor prognosis. Cuproptosis is a novel cell death mechanism. The aim of this study was to examine the biological characteristics and clinical significance of genes associated with cuproptosis in lung adenocarcinoma (LUAD), and to understand the molecular mechanisms underlying the occurrence and progression of LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!