The X-linked WTX/AMER1 protein constitutes an important component of the β-catenin destruction complex that can both enhance and suppress canonical β-catenin signaling. Somatic mutations in WTX/AMER1 have been found in a proportion of the pediatric kidney cancer Wilms' tumor. By contrast, germline mutations cause the severe sclerosing bone dysplasia osteopathia striata congenita with cranial sclerosis (OSCS), a condition usually associated with fetal or perinatal lethality in male patients. Here we address the developmental and molecular function of WTX by generating two novel mouse alleles. We show that in addition to the previously reported skeletal abnormalities, loss of Wtx causes severe midline fusion defects including cleft palate and ectopic synostosis at the base of the skull. By contrast, deletion of the C-terminal part of the protein results in only mild developmental abnormalities permitting survival beyond birth. Adult analysis, however, revealed skeletal defects including changed skull morphology and an increased whole-body bone density, resembling a subgroup of male patients carrying a milder, survivable phenotype. Molecular analysis in vitro showed that while β-catenin fails to co-immunoprecipitate with the truncated protein, partial recruitment appears to be achieved in an indirect manner using AXIN/AXIN2 as a molecular bridge. Taken together our analysis provides a novel model for WTX-caused bone diseases and explains on the molecular level how truncation mutations in this gene may retain some of WTX-protein functions. © 2018 American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.3387DOI Listing

Publication Analysis

Top Keywords

osteopathia striata
8
cranial sclerosis
8
sclerosis oscs
8
analysis novel
8
novel mouse
8
male patients
8
defects including
8
genetic molecular
4
molecular insights
4
insights genotype-phenotype
4

Similar Publications

Sclerosing bone dysplasias encompass abnormalities in bone density, divided into hereditary and nonhereditary forms. Primarily diagnosed through radiography, they are often incidental findings. Among the hereditary forms, the following stand out: osteopetrosis, osteopoikilosis, multiple diaphyseal sclerosis (ribbing disease), osteopathia striata, and Camurati-Engelmann disease.

View Article and Find Full Text PDF
Article Synopsis
  • Syndromic hearing loss (SHL) involves diverse genetic causes, with over 400 types identified, primarily following an autosomal dominant inheritance pattern.
  • A study analyzed 14 patients (ages 5-78 months) with various syndromes associated with SHL, discovering ten new genetic variants and confirming cases of well-known syndromes like Waardenburg and CHARGE.
  • Results suggest that combining neonatal hearing screenings with whole exome sequencing can effectively diagnose SHL early, highlighting the need for thorough monitoring of patients due to the complexity and variability of SHL symptoms.
View Article and Find Full Text PDF

Osteopathia Striata with Cranial Sclerosis (OSCS) is a rare genetic condition primarily characterized by metaphyseal striations of long bones, bone sclerosis, macrocephaly, and other congenital anomalies. It is caused by pathogenic variants in AMER1, a tumor suppressor and a WNT signaling repressor gene with key roles in tissue regeneration, neurodevelopment, tumorigenesis, and other developmental processes. While somatic AMER1 pathogenic variants have frequently been identified in several tumor types (e.

View Article and Find Full Text PDF

With the goal of developing a high-performance organic solar cell, nine molecules of A-D-A-D-A type are originated in the current investigation. The optoelectronic properties of all the proposed compounds are examined by employing the DFT approach and the B3LYP functional with a 6-31G (d, p) basis set. By substituting the terminal moieties of reference molecule with newly proposed acceptor groups, several optoelectronic and photovoltaic characteristics of OSCs have been studied, which are improved to a significant level when compared with reference molecule, i.

View Article and Find Full Text PDF

Context: Osteopathia striata with cranial sclerosis (OSCS) is a rare bone disorder with X-linked dominant inheritance, characterized by a generalized hyperostosis in the skull and long bones and typical metaphyseal striations in the long bones. So far, loss-of-function variants in AMER1 (also known as WTX or FAM123B), encoding the APC membrane recruitment protein 1 (AMER1), have been described as the only molecular cause for OSCS. AMER1 promotes the degradation of β-catenin via AXIN stabilization, acting as a negative regulator of the WNT/β-catenin signaling pathway, a central pathway in bone formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!