The formation of reproductive barriers between allopatric populations involves the accumulation of incompatibilities that lead to intrinsic postzygotic isolation. The evolution of these incompatibilities is usually explained by the Dobzhansky-Muller model, where epistatic interactions that arise within the diverging populations, lead to deleterious interactions when they come together in a hybrid genome. These incompatibilities can lead to hybrid inviability, killing individuals with certain genotypic combinations, and causing the population's allele frequency to deviate from Mendelian expectations. Traditionally, hybrid inviability loci have been detected by genotyping individuals at different loci across the genome. However, this method becomes time consuming and expensive as the number of markers or individuals increases. Here, we test if a Pool-seq method can be used to scan the genome of F2 hybrids to detect genomic regions that are affected by hybrid inviability. We survey the genome of hybrids between 2 populations of the copepod Tigriopus californicus, and show that this method has enough power to detect even small changes in allele frequency caused by hybrid inviability. We show that allele frequency estimates in Pool-seq can be affected by the sampling of alleles from the pool of DNA during the library preparation and sequencing steps and that special considerations must be taken when aligning hybrid reads to a reference when the populations/species are divergent.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esx115DOI Listing

Publication Analysis

Top Keywords

hybrid inviability
20
allele frequency
12
genomic regions
8
regions hybrid
8
incompatibilities lead
8
genome hybrids
8
hybrid
7
inviability
5
pool-seq search
4
search genomic
4

Similar Publications

CRISPR/Cas9-mediated knockout of GhAMS11 and GhMS188 reveals key roles in tapetal development and pollen exine formation in upland cotton.

Int J Biol Macromol

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:

The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.

View Article and Find Full Text PDF

A history of studies of reproductive isolation between and .

Fly (Austin)

December 2025

Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.

and are a sister species pair that have been used as a model for studies of reproductive isolation and speciation for almost 100 years owing to their close evolutionary history, well characterized genetic differences, and overlapping geographic distribution. There are extensive analyses of both pre- and post-zygotic isolation, including studies of courtship divergence, conspecific sperm precedence (CSP) and how reinforcement by natural selection may or may not act to strengthen isolation in sympatry. Post-zygotic analyses explore the underlying mechanics of reproductive isolation; how inversions may give rise to initial speciation events and misexpression of key genes typically found within inversion regions render hybrid offspring unfit or inviable.

View Article and Find Full Text PDF

The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation.

View Article and Find Full Text PDF

Hybrid incompatibility emerges at the one-cell stage in interspecies embryos.

bioRxiv

October 2024

Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Intrinsic reproductive isolation occurs when genetic differences between populations disrupt the development of hybrid organisms, preventing gene flow and enforcing speciation. While prior studies have examined the genetic origins of hybrid incompatibility, the effects of incompatible factors on development remain poorly understood. Here, we investigate the mechanistic basis of hybrid incompatibility in nematodes by capitalizing on the ability of females to produce embryos after mating with males from several other species.

View Article and Find Full Text PDF

Identification of candidate genes related to hybrid sterility by genomic structural variation and transcriptome analyses in cattle-yak.

J Dairy Sci

January 2025

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Electronic address:

Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!