Plant cuticular wax is a heterogeneous mixture of very long chain fatty acids (VLCFAs) and their derivatives. Primary alcohols are the dominant wax components throughout leaf development of Brachypodium distachyon (Brachypodium). However, the genes involved in primary alcohol biosynthesis have not been investigated and their exact biological function remains unclear in Brachypodium to date. Here, we monitored the leaf wax profile and crystal morphology during Brachypodium leaf morphogenesis, and isolated three Brachypodium fatty acyl-CoA reductase (FAR) genes, named BdFAR1, BdFAR2 and BdFAR3, then analyzed their biochemical activities, substrate specificities, expression patterns, subcellular localization and stress induction. Transgenic expression of BdFAR genes in yeast (Saccharomyces cerevisiae), tomato (Solanum lycopersicum), Arabidopsis (Arabidopsis thaliana) and Brachypodium increased the production of primary alcohols. The three BdFAR genes were preferentially expressed in Brachypodium aerial tissues, consistent with known sites of wax primary alcohol deposition, and localized in the endoplasmic reticulum (ER) in Arabidopsis protoplasts. Finally, expression of the BdFAR genes was induced by drought, cold and ABA treatments, and drought stress significantly increased cuticular wax accumulation in Brachypodium. Taken together, these results indicate that the three BdFAR genes encode active FARs involved in the biosynthesis of Brachypodium wax primary alcohols and respond to abiotic stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcx211DOI Listing

Publication Analysis

Top Keywords

bdfar genes
16
cuticular wax
12
wax primary
12
primary alcohol
12
primary alcohols
12
brachypodium
10
bdfar1 bdfar2
8
bdfar2 bdfar3
8
alcohol biosynthesis
8
biosynthesis brachypodium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!