Determination of IMM-H004 and its active glucuronide metabolite in rat plasma and Ringer's solution by ultra-performance liquid chromatography-tandem mass spectrometry.

J Chromatogr B Analyt Technol Biomed Life Sci

Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing 100050, China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing 100050, China; Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, Beijing 100050, China.

Published: February 2018

IMM-H004 is a novel neuroprotective agent and its glucuronide metabolite IMM-H004G has similar protective effects against cerebral ischemic injury in vivo and in vitro. A specific and sensitive ultra-performance liquid chromatography-tandem mass spectrometry method was established and validated for determination of IMM-H004 and IMM-H004G simultaneously in rat plasma and Ringer's solution. Plasma samples containing IMM-H004, IMM-H004G and internal standard propranolol were prepared by direct protein precipitation in a sample-to-solvent ratio of 1:2:6 (plasma: water: acetonitrile), whereas no protein precipitation was required for Ringer's solution samples. Separation was performed with a gradient mobile phase of methanol/water with 0.5% formic acid (v/v) on Eclipse Plus C18 column (2.1×50mm, 3.5μm) at a flow rate of 0.3mL/min. The detection was operated on a triple quadrupole mass spectrometer in positive ion multiple reaction monitoring (MRM) mode. The monitored transitions were 305.1→248.1 for IMM-H004, 481.3→305.1 for IMM-H004G and 260.1→183.1 for propranolol. The linear ranges of IMM-H004 and IMM-H004G were 5 to 3000ng/mL and 10 to 3000ng/mL for plasma method and 0.5 to 500ng/mL for Ringer's solution method. All the intra-day and inter-day precision and accuracy for the two analytes in rat plasma were below 7.5% and the intra-day precision and accuracy for analytes in Ringer's solution were within ±14.7%. There was no obvious matrix effect and the recoveries of the analytes were higher than 94.2%. IMM-H004 and IMM-H004G were stable during one analytic process. The established method was applied successfully to plasma pharmacokinetic and brain microdialysis studies of IMM-H004 and IMM-H004G in rats after a single intravenous administration of IMM-H004.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2017.12.030DOI Listing

Publication Analysis

Top Keywords

ringer's solution
20
imm-h004 imm-h004g
20
rat plasma
12
determination imm-h004
8
glucuronide metabolite
8
plasma ringer's
8
ultra-performance liquid
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!