The functionalization of alumina nanoparticles of specific morphology with antimicrobial peptides (AMP) can be a promising strategy for modeling medical devices and packaging materials for cosmetics, medicines or food, since the contamination by pathogens could be reduced. In this paper, we show the synthesis of a fibrous-like alumina nanobiostructure, as well as its functionalization with the peptide EAAA-BP100, an analog of the antimicrobial peptide BP100. The antibacterial activity of the obtained material against some bacterial strains is also investigated. The covalent binding of the peptide to the nanoparticles was promoted by a reaction between the carboxyl group of the glutamate side chain (E1) of the peptide and the amino groups of the alumina nanoparticles, previously modified by reaction with 3-aminopropyltrietoxysilane (APTES). The functionalized nanoparticles were characterized by zeta potential measurements, Fourier transform infrared spectroscopy, and other physicochemical techniques. Although the obtained alumina nanobiostructure shows a relatively low degree of substitution with EAAA-BP100, antibacterial activities against Escherichia coli and Salmonella typhimurium strains are appreciably higher than the activities of the free peptide. The obtained results can affect the design of new hybrid nanobiomaterials based on nanoparticles functionalized with AMP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.01.001 | DOI Listing |
Materials (Basel)
February 2023
School of Mining and Technology, Inner Mongolia University of Technology, Hohhot 010051, China.
In order to high-value utilize the secondary solid waste calcium silicate slag (CSS) generated in the process of the extraction of alumina from fly ash, in this paper, tobermorite was synthesized using CSS and silica fume (SF) at different hydrothermal synthesis times. The hydrothermal synthesis was evaluated by means of XRD, SEM, EDS, and micropore analysis, and the results discussed. The results indicate that β-dicalcium silicate, the primary phase in the CSS, partially hydrates at the beginning of hydrothermal synthesis conditions to form mesh-like crystal C-S-H (calcium-rich) and calcium hydroxide.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2018
Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, MG, Brazil. Electronic address:
The functionalization of alumina nanoparticles of specific morphology with antimicrobial peptides (AMP) can be a promising strategy for modeling medical devices and packaging materials for cosmetics, medicines or food, since the contamination by pathogens could be reduced. In this paper, we show the synthesis of a fibrous-like alumina nanobiostructure, as well as its functionalization with the peptide EAAA-BP100, an analog of the antimicrobial peptide BP100. The antibacterial activity of the obtained material against some bacterial strains is also investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!