Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrochemically active anodic biofilm that has adapted under mild applied potentials in the range 100-500 mV was evaluated for its improved bioelectrogenesis and bioelectrochemical treatment of petroleum refinery wastewater (PRW) in a single chamber air cathode microbial fuel cell (MFC). MFC operation with 500 mV as supplemental voltage has exhibited a maximum power density of 132 mW/m, which was three times higher than control MFC (45 mW/m). Similarly, highest substrate removal efficiency (48%) was also obtained with the MFC of 500 mV, followed by 300 mV (37%), 100 mV (32%) and control (27%). Adaptation under applied potential conditions also exhibited enhanced degradation efficiency of diesel range organics (DROs)/straight chain-alkanes. The strategy efficiently reduced DROs with the maximum efficiency of 89% (500 mV), which is almost 50% higher than that of the control system (59%), demonstrating the effectiveness of using supplemented voltage in treating PRW.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!