Liquid helium and spin-1/2 cold-atom Fermi gases both exhibit in their superfluid phase two distinct types of excitations, gapless phonons and gapped rotons or fermionic pair-breaking excitations. In the long wavelength limit, revising and extending the theory of Landau and Khalatnikov initially developed for helium [Zh. Exp. Teor. Fiz. 19, 637 (1949)], we obtain universal expressions for three- and four-body couplings among these two types of excitations. We calculate the corresponding phonon damping rates at low temperature and compare them to those of a pure phononic origin in high-pressure liquid helium and in strongly interacting Fermi gases, paving the way to experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.119.260402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!