Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway.

Oncol Rep

Department of General Surgery, Institute of General Surgery, Northern Jiangsu Provincial People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.

Published: March 2018

Chronic pancreatitis/pancreatic cancer (CP/PC) is characterized by fibrous connective tissue proliferation induced by activated pancreatic stellate cells (PSCs). Galectin-1 is upregulated in activated PSCs and is important for the continuing activation of PSCs. The aim of this study was to evaluate the effect of galectin-1 derived from activated PSCs on the progression of fibrosis in CP/PC. To this end, the expression of desmin, α-SMA, galectin-1, fibronectin and collagen type I in normal pancreatic, CP and PC tissues, as well as quiescent/activated PSCs, was investigated. The proliferation rate and migration ability of control, galectin-1-overexpressing and galectin-1-silenced PSCs were also evaluated, as well as the mRNA and protein expression of fibronectin, collagen type I, α-SMA, tissue inhibitors of metalloproteinases (TIMP)-1, MMP-2, Smad2 and TGF-β1. Furthermore, the effect of adding a TGF-β1 receptor inhibitor on the expression of these proteins was examined. The results revealed that the expression profile of desmin, α-SMA, galectin-1, fibronectin and collagen type I in the normal pancreas was similar to that of quiescent PSCs and the expression profile in CP/PC tissues was similar to that of activated PSCs. Furthermore, galectin-1-overexpressing PSCs exhibited a significantly higher proliferation rate and migration ability, while galectin-1-silenced PSCs exhibited a significantly lower proliferation rate and migration ability than the control PSCs. The expression of fibronectin, collagen type I, α-SMA, MMP-2 and TIMP-1 was also significantly higher in the galectin-1-overexpressing PSCs than the control PSCs and this effect was found to be mediated by the TGF-β1/Smad pathway. The trends in the expression of these factors were reversed in the galectin-1-silenced PSCs. From these findings, it can be concluded that overexpression of galectin-1 promotes PSC activity (proliferation and migration) and stimulates fibrosis by increasing extracellular matrix synthesis and decreasing the MMP/TIMP ratio via the TGF-β1/Smad pathway. Thus, galectin-1 may be a novel candidate for reversing or halting fibrosis progression in CP/PC.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2018.6202DOI Listing

Publication Analysis

Top Keywords

fibronectin collagen
16
collagen type i
16
pscs
14
tgf-β1/smad pathway
12
activated pscs
12
proliferation rate
12
rate migration
12
migration ability
12
galectin-1-silenced pscs
12
activated pancreatic
8

Similar Publications

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

Sex Differences in Aortic Valve Inflammation and Remodeling in Chronic Severe Aortic Regurgitation.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.

View Article and Find Full Text PDF

Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques.

View Article and Find Full Text PDF

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

Preeclampsia (PE) is a gestational complication affecting 5% to 10% of all pregnancies. PE is characterized by hypertension and endothelial dysfunction, whose etiology involves, among other factors, alterations in the extracellular matrix (ECM) that can compromise vascular remodeling and trophoblast invasion, ie, processes essential for placental development. Endothelial dysfunction is caused by release of antiangiogenic factors, mainly a soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes two endothelial angiogenic factors, the vascular endothelial growth factor (VEGF) and placental growth factor (PLGF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!