Electrically tunable lenses offer the possibility to control the focal distance by applying an electric field. Different liquid crystal tunable lenses have been demonstrated. In order to minimize lens aberrations, multi-electrode designs allow us to fine-tune the applied voltages for every possible focal distance. In this Letter, we provide a novel multi-electrode design in which only one lithography step is necessary, thereby offering a greatly simplified fabrication procedure compared to earlier proposed designs. The key factor is the use of a high-permittivity layer, in combination with floating electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.000271DOI Listing

Publication Analysis

Top Keywords

liquid crystal
8
lithography step
8
tunable lenses
8
focal distance
8
multi-electrode tunable
4
tunable liquid
4
crystal lenses
4
lenses lithography
4
step electrically
4
electrically tunable
4

Similar Publications

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color.

View Article and Find Full Text PDF

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

Introduction: The persistence of in the contaminated environment is sustained by tolerance to biocides and ability to growth as biofilm. The aim of the study was to analyze the susceptibility of biofilms to chlorhexidine (CHX) and benzalkonium (BZK) biocides and the ability of natural monomeric stilbenoid resveratrol (RV) to modulate the phenomenon.

Methods: Biofilm formation and preformed biofilm were tested by Crystal violet and tetrazolium salt reduction assay, respectively.

View Article and Find Full Text PDF

Maintaining hexagonal structures through interfacial positioning of crosslinkers for nanofiltration.

J Colloid Interface Sci

December 2024

Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:

Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.

Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!