We present a combined experimental, theoretical, and numerical study of photon transport and microscopic dynamics in rigid and drying turbid thin films. Our setup is based in multispeckle diffusing wave spectroscopy and is adapted for frequency sweep of the illuminating source. We apply our approach to simultaneously monitor the changes in optical properties and microscopic dynamics of turbid thin films of rutile TiO powder dispersed in ethanol during the full drying process. Accordingly, we introduce an extension of the photon diffusion model for spectral speckle intensity correlations to account for system microscopic dynamics. We find that our results are well described by the model, where parameters required as the time-dependent sample thickness and transport mean free path are obtained from experiments. Furthermore, our findings are validated by numerical simulations of speckle dynamics based on the copula scheme. We consider that our scheme could be useful in time-resolved physical characterization of time-evolving turbid thin systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.57.000208DOI Listing

Publication Analysis

Top Keywords

microscopic dynamics
16
turbid thin
12
optical properties
8
properties microscopic
8
diffusing wave
8
wave spectroscopy
8
thin films
8
dynamics
5
time-resolved study
4
study optical
4

Similar Publications

This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.

View Article and Find Full Text PDF

The present work constitutes the initial experimental effort to characterise the dynamic tensile performance of basalt fibre grids employed in TRM systems. The tensile behaviour of a bi-directional basalt fibre grid was explored using a high-speed servo-hydraulic testing machine with specialised grips. Deformation and failure modes were captured using a high-speed camera.

View Article and Find Full Text PDF

Polyurethane (PU) grouting materials are widely used in underground engineering rehabilitation, particularly in reinforcement and waterproofing engineering in deep-water environments. The long-term effect of complex underground environments can lead to nanochannel formation within PU, weakening its repair remediation effect. However, the permeation behavior and microscopic mechanisms of water molecules within PU nanochannels remain unclear.

View Article and Find Full Text PDF

Dissolution Mechanism of YbOF in (LiF-CaF) Molten Salt.

Molecules

January 2025

School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.

View Article and Find Full Text PDF

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!