Tetrablock Metallopolymer Electrochromes.

Angew Chem Int Ed Engl

ISM, UMR CNRS 5255, Univ. Bordeaux, 33405, Talence Cedex, France.

Published: February 2018

Multi-block polymers are highly desirable for their addressable functions that are both unique and complementary among the blocks. With metal-containing polymers, the goal is even more challenging insofar as the metal properties may considerably extend the materials functions to sensing, catalysis, interaction with metal nanoparticles, and electro- or photochrome switching. Ring-opening metathesis polymerization (ROMP) has become available for the formation of living polymers using highly efficient initiators such as the 3rd generation Grubbs catalyst [RuCl (NHC)(=CHPh)(3-Br-C H N) ], 1. Among the 24 possibilities to introduce 4 blocks of metallopolymers into a tetrablock metallocopolymer by ROMP using the catalyst 1, two viable pathways are disclosed. The synthesis, characterization, electrochemistry, electron-transfer chemistry, and remarkable electrochromic properties of these new nanomaterials are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201712945DOI Listing

Publication Analysis

Top Keywords

polymers highly
8
tetrablock metallopolymer
4
metallopolymer electrochromes
4
electrochromes multi-block
4
multi-block polymers
4
highly desirable
4
desirable addressable
4
addressable functions
4
functions unique
4
unique complementary
4

Similar Publications

The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity.  Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions.

View Article and Find Full Text PDF

The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration.

View Article and Find Full Text PDF

Bifunctional oxygen electrocatalysis is a pivotal process that underpins a diverse array of sustainable energy technologies, including electrolyzers and fuel cells. Metal selenides have been identified as highly promising candidates for oxygen electrocatalysts with electronic structure engineering that lies at the heart of catalyst design. Two-phase Fe-doped nitrogen carbon (NC)-supported nickel selenides were synthesized using a coordination polymer template.

View Article and Find Full Text PDF

Over-oxidation of surface ruthenium active sites of RuO-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO/NbO electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm, a small Tafel slope of 73 mV dec, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO to NbO and the subsequent participation of lattice oxygen of NbO instead of RuO for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.

View Article and Find Full Text PDF

Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!