Transition-metal oxides (TMOs) with brownmillerite (BM) structures possess one-dimensional oxygen vacancy channels (OVCs), which play a key role in realizing high ionic conduction at low temperatures. The controllability of the vacancy channel orientation, thus, possesses a great potential for practical applications and would provide a better visualization of the diffusion pathways of ions in TMOs. In this study, the orientations of the OVCs in BM-SrFeO are stabilized along two crystallographic directions of the epitaxial thin films. The distinctively orientated phases are found to be highly stable and exhibit a considerable difference in their electronic structures and optical properties, which could be understood in terms of orbital anisotropy. The control of the OVC orientation further leads to modifications in the hydrogenation of the BM-SrFeO thin films. The results demonstrate a strong correlation between crystallographic orientations, electronic structures, and ionic motion in the BM structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b17377DOI Listing

Publication Analysis

Top Keywords

thin films
12
oxygen vacancy
8
vacancy channels
8
epitaxial thin
8
electronic structures
8
directing oxygen
4
channels srfeo
4
srfeo epitaxial
4
films transition-metal
4
transition-metal oxides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!