Cp TiX Complexes for Sustainable Catalysis in Single-Electron Steps.

Chemistry

Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Str. 1, 53121, Bonn, Germany.

Published: April 2018

We present a combined electrochemical, kinetic, and synthetic study with a novel and easily accessible class of titanocene catalysts for catalysis in single-electron steps. The tailoring of the electronic properties of our Cp TiX-catalysts that are prepared in situ from readily available Cp TiX is achieved by varying the anionic ligand X. Of the complexes investigated, Cp TiOMs proved to be either equal or substantially superior to the best catalysts developed earlier. The kinetic and thermodynamic properties pertinent to catalysis have been determined. They allow a mechanistic understanding of the subtle interplay of properties required for an efficient oxidative addition and reduction. Therefore, our study highlights that efficient catalysts do not require the elaborate covalent modification of the cyclopentadienyl ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201705707DOI Listing

Publication Analysis

Top Keywords

catalysis single-electron
8
single-electron steps
8
tix complexes
4
complexes sustainable
4
sustainable catalysis
4
steps combined
4
combined electrochemical
4
electrochemical kinetic
4
kinetic synthetic
4
synthetic study
4

Similar Publications

Over the past few decades, the merger of photocatalysis and transition metal-based catalysis or self-photoexcitation of transition metals has emerged as a useful tool in organic transformations. In this context, cobalt-based systems have attracted significant attention as sustainable alternatives to the widely explored platinum group heavy metals (iridium, rhodium, ruthenium) for photocatalytic chemical transformations. This review encompasses the basic types of cobalt-based homogeneous photocatalytic systems, their working principles, and the recent developments (2018-2024) in C-X (X = C, N, O, H, Si) bond formations.

View Article and Find Full Text PDF

Recent advances in electrochemical copper catalysis for modern organic synthesis.

Beilstein J Org Chem

January 2025

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.

In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Photoredox-Catalyzed 1,4-Dichloromethyldimerization of Alkenes with Chloroform: Access to Polychlorinated Vicinal Diaryl Alkanes.

Chemistry

January 2025

Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China.

A visible-light-mediated strategy is reported for the direct synthesis of polychlorinated vicinal diaryl alkanes from aryl alkenes and chloroform. In this approach, two haloalkyl radicals generated from chloroform via halogen atom transfer (XAT) and direct single electron transfer (SET) within the same photoredox catalysis cycle enable the 1,4-dichloromethyldimerization of alkenes. Besides chloroform, this strategy is applicable to carbon tetrachloride, bromotrichloromethane, and α-bromo carboxylic esters, yielding corresponding 1,4-disubstituted vicinal diaryl alkanes.

View Article and Find Full Text PDF

Transformation mechanism, kinetics and ecotoxicity of kaempferol and quercetin in the gaseous and aqueous phases: A theoretical combined experimental study.

Sci Total Environ

January 2025

Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China.

The transformation and risk assessment of flavonoids triggered by free radicals deserve extensive attention. In this work, the degradation mechanisms, kinetics, and ecotoxicity of kaempferol and quercetin mediated by ∙OH, ∙OCH, ∙OOH, and O in gaseous and aqueous environments were investigated using cell experiments and quantum chemical calculations. Three radical scavenging mechanisms, including hydrogen atom transfer (HAT), radical adduct formation (RAF) and single electron transfer (SET) were discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!