There is a need to establish in vitro lung alveolar epithelial culture models to better understand the fundamental biological mechanisms that drive lung diseases. While primary alveolar epithelial cells (AEC) are a useful option to study mature lung biology, they have limited utility in vitro. Cells that survive demonstrate limited proliferative capacity and loss of phenotype over the first 3-5 days in traditional culture conditions. To address this limitation, we generated a novel physiologically relevant cell culture system for enhanced viability and maintenance of phenotype. Here we describe a method utilizing e-beam lithography, reactive ion etching, and replica molding to generate poly-dimethylsiloxane (PDMS) substrates containing hemispherical cavities that mimic the architecture and size of mouse and human alveoli. Primary AECs grown on these cavity-containing substrates form a monolayer that conforms to the substrate enabling precise control over cell sheet architecture. AECs grown in cavity culture conditions remain viable and maintain their phenotype over one week. Specifically, cells grown on substrates consisting of 50 μm diameter cavities remained 96 ± 4% viable and maintained expression of surfactant protein C (SPC), a marker of type 2 AEC over 7 days. While this report focuses on primary lung alveolar epithelial cells, our culture platform is potentially relevant and useful for growing primary cells from other tissues with similar cavity-like architecture and could be further adapted to other biomimetic shapes or contours.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7bm00647kDOI Listing

Publication Analysis

Top Keywords

alveolar epithelial
16
epithelial cells
12
lung alveolar
8
culture conditions
8
aecs grown
8
cells
6
culture
5
design biomimetic
4
substrates
4
biomimetic substrates
4

Similar Publications

Improved Annotation of Asthma Gene Variants with Cell Type Deconvolution of Nasal and Lung Expression-Quantitative Trait Loci.

Am J Respir Cell Mol Biol

January 2025

University of Groningen, University Medical Center Groningen, Department of Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, Netherlands.

Asthma is a genetically complex inflammatory airway disease associated with over 200 Single nucleotide polymorphisms (SNPs). However, the functional effects of many asthma-associated SNPs in lung and airway epithelial samples are unknown. Here, we aimed to conduct expression quantitative trait loci (eQTL) analysis using a meta-analysis of nasal and lung samples.

View Article and Find Full Text PDF

Parkin deficiency aggravates inflammation-induced acute lung injury by promoting necroptosis in alveolar type II cells.

Chin Med J Pulm Crit Care Med

December 2024

Medical Research Center; The Zhejiang Key Laboratory of Intelligent Cancer, Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.

Background: Necroptosis is a form of programmed cell death resulting in tissue inflammation due to the release of intracellular contents. Its role and regulatory mechanism in the context of acute lung injury (ALI) are unclear. Parkin (Prkn), an E3 ubiquitin ligase, has recently been implicated in the regulation of necroptosis.

View Article and Find Full Text PDF

Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.

View Article and Find Full Text PDF

Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.

View Article and Find Full Text PDF

Unlabelled: Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!