Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy.

Nanoscale

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.

Published: January 2018

AI Article Synopsis

  • Researchers have developed a new photothermal agent (PTA) called PEG-PLD(IR825) by combining a near-infrared dye with a hydrophilic polymer, enabling it to form nanomicelles in water.
  • The nanomicelles show high drug loading and targeted delivery, effectively localizing in cellular organelles like mitochondria, leading to improved cancer cell destruction when exposed to near-infrared laser light.
  • Importantly, these nanomicelles degrade after treatment, ensuring safety and reducing risk to surrounding healthy tissues, making them a promising option for cancer imaging and therapy.

Article Abstract

Developing biocompatible and photodegradable photothermal agents (PTAs) holds great promise for potential clinical applications in photothermal cancer therapy. Herein, a new PTA was innovatively constructed by conjugating the hydrophobic near-infrared (NIR) heptamethine cyanine molecule IR825-NH with a double hydrophilic block copolymer methoxypoly(ethylene glycol)-block-poly(l-aspartic acid sodium salt) (abbreviated as PEG-PLD) via amine-carboxyl reaction. The as-designed PEG-PLD(IR825) was amphiphilic and could self-assemble into polymeric nanomicelles in aqueous solutions. Benefiting from the chemical conjugation strategy, PEG-PLD(IR825) nanomicelles realized a considerably high drug loading rate (∼21.0%) and substantially avoided the premature release of IR825 during systemic circulation. Confocal imaging revealed that the nanomicelles mainly located at mitochondria and endoplasmic reticulum after cellular internalization. In vitro photothermal therapy demonstrated the excellent cancer killing efficiency of PEG-PLD(IR825) nanomicelles due to their high light-to-heat conversion efficiency upon NIR laser irradiation. In addition, PEG-PLD(IR825) nanomicelles showed polarity-sensitive fluorescence at ∼610 nm (under 552 nm excitation) and 830 nm (under 780 nm excitation), which was especially useful for both in vitro visible fluorescence imaging and in vivo near-infrared fluorescence imaging-guided photothermal therapy (PTT). At the in vivo level, PEG-PLD(IR825) nanomicelles exhibited an excellent tumor-homing ability and a long retention time in tumor tissues as evidenced by the in vivo fluorescence imaging results. The desirable properties of PEG-PLD(IR825) nanomicelles ensured their effective tumor ablation during PTT treatment. More importantly, the PEG-PLD(IR825) nanomicelles underwent degradation after laser irradiation, which ensured their post-treatment biosafety. Therefore, the nanomicelles are promising to serve as an efficient and safe PTA for imaging-guided photothermal cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr07495fDOI Listing

Publication Analysis

Top Keywords

peg-pldir825 nanomicelles
24
imaging-guided photothermal
12
photothermal cancer
12
cancer therapy
12
nanomicelles
10
double hydrophilic
8
polymeric nanomicelles
8
near-infrared fluorescence
8
fluorescence imaging-guided
8
photothermal therapy
8

Similar Publications

PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors.

J Control Release

January 2025

Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:

In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.

View Article and Find Full Text PDF

Chimeric Peptide Functionalized Immunostimulant to Orchestrate Photodynamic Immunotherapeutic Effect by PD-L1 Deglycosylation and CD47 Inhibition.

ACS Appl Mater Interfaces

January 2025

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.

Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG-GFTATPPAPDSPQEP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!