Hyperpolarization turns weak nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) responses into strong signals, so normally impractical measurements are possible. We use hydrogen to rapidly hyperpolarize appropriate H, C, N, and P responses of analytes (such as NH) and important amines (such as phenylethylamine), amides (such as acetamide, urea, and methacrylamide), alcohols spanning methanol through octanol and glucose, the sodium salts of carboxylic acids (such as acetic acid and pyruvic acid), sodium phosphate, disodium adenosine 5'-triphosphate, and sodium hydrogen carbonate. The associated signal gains are used to demonstrate that it is possible to collect informative single-shot NMR spectra of these analytes in seconds at the micromole level in a 9.4-T observation field. To achieve these wide-ranging signal gains, we first use the signal amplification by reversible exchange (SABRE) process to hyperpolarize an amine or ammonia and then use their exchangeable NH protons to relay polarization into the analyte without changing its identity. We found that the H signal gains reach as high as 650-fold per proton, whereas for C, the corresponding signal gains achieved in a H-C refocused insensitive nuclei enhanced by polarization transfer (INEPT) experiment exceed 570-fold and those in a direct-detected C measurement exceed 400-fold. Thirty-one examples are described to demonstrate the applicability of this technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756661 | PMC |
http://dx.doi.org/10.1126/sciadv.aao6250 | DOI Listing |
Anal Chim Acta
February 2025
Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:
Background: Lysosomes, as an indispensable subcellular organelle have numerous physiological functions closely associated with HS and viscosity, and accurate assessment of HS/viscosity fluctuations in lysosomes is essential for gaining a comprehensive understanding of lysosome-related physiological activities and pathological processes. The previous single-response fluorescent probes for either HS or viscosity alone have the potential to generate "false positive" signals in a complex biological environment. In contrast, dual-locked probes can simultaneously respond to multiple targets simultaneously, which could effectively eliminate this defect.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India.
Labdane diterpenoid lactone andrographolide has gained attention in medicinal research due to its potential anticancer properties in terms of suppression of the growth, propagation, and relocation of various types of cancerous cells. The current review provides deep insight into the pharmacological analysis of the anticancer secondary metabolite andrographolide. We have attempted to keep an overview on the interaction of promising drugs like ligand molecule andrographolide with various biological targets.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Carbon monoxide (CO) is recognized as a signaling molecule in plants, inducing various physiological responses. This article briefly examines the physiological functions of CO in seed biology and seedlings' responses to environmental stresses. The activity of heme oxygenase (HO), the main enzyme responsible for CO synthesis, is a key factor controlling CO levels in plant cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
Epilepsy is a prevalent neurological disorder characterized by seizures that significantly impact individuals and their social environments. Given the unpredictable nature of epileptic seizures, developing automated epilepsy diagnosis systems is increasingly important. Epilepsy diagnosis traditionally relies on analyzing EEG signals, with recent deep learning methods gaining prominence due to their ability to bypass manual feature extraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!