Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option.

Front Endocrinol (Lausanne)

Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand.

Published: December 2017

Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733488PMC
http://dx.doi.org/10.3389/fendo.2017.00350DOI Listing

Publication Analysis

Top Keywords

novel therapeutic
12
therapeutic angiogenesis
12
critical limb
8
limb ischemia
8
treatment option
8
therapeutic cli
8
cli
6
therapeutic
6
patients
5
angiogenesis
5

Similar Publications

Background: A novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate (ADC) GQ1001 was assessed in patients with previously treated HER2 positive advanced solid tumors in a global multi-center phase Ia dose escalation trial.

Methods: In this phase Ia trial, a modified 3 + 3 study design was adopted during dose escalation phase. Eligible patients were enrolled, and GQ1001 monotherapy was administered intravenously every 3 weeks.

View Article and Find Full Text PDF

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

Exploring nagZ as a virulence biomarker and treatment target in Enterobacter cloacae.

BMC Microbiol

January 2025

Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.

Background: Enterobacter cloacae is increasingly prevalent and resistant to multiple antibiotics, making it a significant pathogen in healthcare settings with high mortality rates. However, its pathogenic mechanisms are not fully understood.

Results: In this study, we explored the role of nagZ in regulating the virulence of E.

View Article and Find Full Text PDF

Identification of a Subpopulation of Astrocyte Progenitor Cells in the Neonatal Subventricular Zone: Evidence that Migration is Regulated by Glutamate Signaling.

Neurochem Res

January 2025

Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.

In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!