Identification and Expression Patterns of Putative Diversified Carboxylesterases in the Tea Geometrid Prout.

Front Physiol

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Published: December 2017

Carboxylesterases (CXEs) belong to a family of metabolic enzymes. Some CXEs act as odorant-degrading enzymes (ODEs), which are reportedly highly expressed in insect olfactory organs and participate in the rapid deactivation of ester pheromone components and plant volatiles. The tea geometrid Prout produces sex pheromones consisting of non-ester functional compounds but relies heavily on acetic ester plant volatiles to search for host plants and locate oviposition sites. However, studies characterizing putative candidate ODEs in this important tea plant pest are still relatively scarce. In the present study, we identified 35 candidate genes from chemosensory organs based on previously obtained transcriptomic data. The deduced amino acid sequences possessed the typical characteristics of the insect CXE family, including oxyanion hole residues, the Ser-Glu-His catalytic triad, and the Ser active included in the conserved pentapeptide characteristic of esterases, Gly-X-Ser-X-Gly. Phylogenetic analyses revealed that the EoblCXEs were diverse, belonging to several different insect esterase clades. Tissue- and sex-related expression patterns were studied via reverse-transcription and quantitative real-time polymerase chain reaction analyses (RT- and qRT-PCR). The results showed that 35 genes presented a diversified expression profile; among these, 12 appeared to be antenna-biased, two were non-chemosensory organ-biased, 12 were ubiquitous, and nine showed heterogeneous expression levels among different tissues. Intriguingly, two genes, and , were not only strongly localized to antennal sensilla tuned to odorants, such as the sensilla trichodea (Str I and II) and sensilla basiconica (Sba), but were also expressed in the putative gustatory sensilla styloconica (Sst), indicating that these two CXEs might play multiple physiological roles in the chemosensory processing system. This study provides the first elucidation of CXEs in the chemosensory system of a geometrid moth species and will enable a more comprehensive understanding of the functions of insect CXEs across lepidopteran species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741679PMC
http://dx.doi.org/10.3389/fphys.2017.01085DOI Listing

Publication Analysis

Top Keywords

expression patterns
8
tea geometrid
8
geometrid prout
8
plant volatiles
8
cxes
5
identification expression
4
patterns putative
4
putative diversified
4
diversified carboxylesterases
4
carboxylesterases tea
4

Similar Publications

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of histological findings from the generally benign simple steatosis to steatohepatitis (MASH) which can progress to fibrosis and cirrhosis. Several factors, including the microbiome, may contribute to disease progression.

Results: Here, we demonstrate links between the presence and abundance of specific bacteria in the adipose and liver tissues, inflammatory genes, immune cell responses, and disease severity.

View Article and Find Full Text PDF

AmelOBP4: an antenna-specific odor-binding protein gene required for olfactory behavior in the honey bee (Apis mellifera).

Front Zool

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.

Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Recent research has highlighted widespread dysregulation of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Here, we identify significant disruptions to 3` UTR polyadenylation in the ALS/FTLD-TDP mouse model rNLS8 that correlate with changes in gene expression and protein levels through the re-analysis of published RNA sequencing and proteomic data. A subset of these changes are shared with TDP-43 knock-down mice suggesting depletion of endogenous mouse TDP-43 is a contributor to polyadenylation dysfunction in rNLS8 mice.

View Article and Find Full Text PDF

Blood from septic patients with necrotising soft tissue infection treated with hyperbaric oxygen reveal different gene expression patterns compared to standard treatment.

BMC Med Genomics

January 2025

Department of Anaesthesiology, Centre of Head and Orthopedics, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, Copenhagen, 2100, Denmark.

Background: Sepsis and shock are common complications of necrotising soft tissue infections (NSTI). Sepsis encompasses different endotypes that are associated with specific immune responses. Hyperbaric oxygen (HBO) treatment activates the cells oxygen sensing mechanisms that are interlinked with inflammatory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!