We studied sleep functions in two patients with mild and five with moderately severe Huntington's disease. In mild disease there was chorea, but intelligence, mental function, and sleep were all normal. In moderately severe disease, intelligence and mental function were also affected, and there was a sleep disturbance characterized by prolonged sleep-onset latency, increased interspersed wakefulness, and reduced sleep efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1212/wnl.35.11.1672DOI Listing

Publication Analysis

Top Keywords

huntington's disease
8
moderately severe
8
intelligence mental
8
mental function
8
function sleep
8
sleep
5
sleep disturbances
4
disturbances severity
4
severity huntington's
4
disease
4

Similar Publications

Neurodegenerative diseases represent a group of disorders characterized by progressive degeneration of neurons in the central nervous system, leading to a range of cognitive, motor, and sensory impairments. In recent years, there has been growing interest in the association between neurodegenerative diseases and olfactory dysfunction (OD). Characterized by a decline in the ability to detect or identify odors, OD has been observed in various conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS).

View Article and Find Full Text PDF

Background: About 1 in 4 veterans have diabetes, and many also have chronic kidney disease (CKD). Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, is approved for the treatment of diabetes. The purpose of this study was to evaluate the effectiveness of empagliflozin on hemoglobin A (HbA) in patients with CKD.

View Article and Find Full Text PDF

Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington's disease.

Transl Neurodegener

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure.

View Article and Find Full Text PDF

Neuroanatomical distribution of endogenous huntingtin and its immunohistochemical relationships with STB/HAP1 in the adult mouse brain and spinal cord.

Neurosci Res

January 2025

Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:

Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.

View Article and Find Full Text PDF

Background: Huntington disease (HD) is a genetic neurodegenerative disorder. Given the focus on motor manifestations, nonmotor symptoms are frequently underappreciated in clinical evaluations, despite frequently contributing to primary functional impairment.

Recent Findings: A diagnosis of motor-onset as the definition of manifest symptoms misrepresents the complex nature of HD presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!