Direct electrical stimulation of the human brain can elicit sensory and motor perceptions as well as recall of memories. Stimulating higher order association areas of the lateral temporal cortex in particular was reported to activate visual and auditory memory representations of past experiences (Penfield and Perot, 1963). We hypothesized that this effect could be used to modulate memory processing. Recent attempts at memory enhancement in the human brain have been focused on the hippocampus and other mesial temporal lobe structures, with a few reports of memory improvement in small studies of individual brain regions. Here, we investigated the effect of stimulation in four brain regions known to support declarative memory: hippocampus, parahippocampal neocortex, prefrontal cortex and temporal cortex. Intracranial electrode recordings with stimulation were used to assess verbal memory performance in a group of 22 patients (nine males). We show enhanced performance with electrical stimulation in the lateral temporal cortex (paired t-test, P = 0.0067), but not in the other brain regions tested. This selective enhancement was observed both on the group level, and for two of the four individual subjects stimulated in the temporal cortex. This study shows that electrical stimulation in specific brain areas can enhance verbal memory performance in humans.awx373media15704855796001.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awx373DOI Listing

Publication Analysis

Top Keywords

temporal cortex
20
verbal memory
12
lateral temporal
12
electrical stimulation
12
brain regions
12
memory
8
memory enhancement
8
stimulation lateral
8
human brain
8
memory performance
8

Similar Publications

Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

: About 65 million people worldwide are affected by epilepsy, with temporal lobe epilepsy being the most common type resistant to drugs and often requiring surgical treatment. Although open surgical approaches, such as temporal lobectomy, have been the method of choice for decades, minimally invasive MRgLITT has demonstrated promising results. However, it remains unknown whether patients who underwent one of these two approaches would show better performance on vestibulo-spatial tasks.

View Article and Find Full Text PDF

Generation of high-resolution MPRAGE-like images from 3D head MRI localizer (AutoAlign Head) images using a deep learning-based model.

Jpn J Radiol

January 2025

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.

View Article and Find Full Text PDF

Fusion of FDG and FMZ PET Reduces False Positive in Predicting Epileptogenic Zone.

AJNR Am J Neuroradiol

January 2025

From the School of Biomedical Engineering (B.C., H.H., J.L., S.Y., Y.C., J.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurosurgery (S.J., J.H., L.C.), and PET Center (W.B.), Huashan Hospital, Fudan University, Shanghai, China.

Background And Purpose: Epilepsy, a globally prevalent neurological disorder, necessitates precise identification of the epileptogenic zone (EZ) for effective surgical management. While the individual utilities of FDG PET and FMZ PET have been demonstrated, their combined efficacy in localizing the epileptogenic zone remains underexplored. We aim to improve the non-invasive prediction of epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) by combining FDG PET and FMZ PET with statistical feature extraction and machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!