AI Article Synopsis

  • Adrenomedullin (ADM) plays a crucial role in maintaining the endothelial barrier during sepsis, and a humanized antibody (HAM8101) showed promising results in enhancing survival and reducing vascular dysfunction in rodent models.
  • The study involved administering varying doses of HAM8101 to rats and mice, followed by tests to measure vascular leakage and key protein levels associated with kidney function post-sepsis.
  • Findings revealed that HAM8101 reduced harmful protein levels while increasing protective proteins, leading to improved outcomes and survival rates in septic rodents, highlighting its potential as a therapeutic option in sepsis treatment.

Article Abstract

Purpose: Adrenomedullin (ADM) is an important regulator of endothelial barrier function during sepsis. Administration of a murine antibody targeted against the N-terminus of ADM (HAM1101) resulted in improved outcome in models of murine sepsis. We studied the effects of a humanized form of this antibody (HAM8101, also known as Adrecizumab) on vascular barrier dysfunction and survival in rodent models of systemic inflammation and sepsis.

Methods: Rats (n=48) received different dosages of HAM8101 or placebo (n = 8 per group), directly followed by administration of lipopolysaccharide (5 mg/kg). Twenty-four hours later, Evans Blue dye was administered to assess vascular leakage in kidney and liver tissue. Furthermore, mice (n = 24) were administered different dosages of HAM8101 or placebo (n = 6 per group), immediately followed by cecal ligation and puncture (CLP). Eighteen hours later, albumin, vascular endothelial growth factor (VEGF), and angiopoietin-1 were analyzed in the kidney. Finally, effects of single and repeated dose administration of HAM1101, HAM8101 and placebo on survival were assessed in CLP-induced murine sepsis (n = 60, n = 10 per group).

Results: Dosages of 0.1 and 2.5 mg/kg HAM8101 attenuated renal albumin leakage in endotoxemic rats. Dosages of 0.1, 2.0, and 20 mg/kg HAM8101 reduced renal concentrations of albumin and the detrimental protein VEGF in septic mice, whereas concentrations of the protective protein angiopoietin-1 were augmented. Both single and repeated administration of both HAM1101 and HAM8101 resulted in improved survival during murine sepsis.

Conclusions: Pretreatment with the humanized anti-ADM antibody HAM8101 improved vascular barrier function and survival in rodent models of systemic inflammation and sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000001102DOI Listing

Publication Analysis

Top Keywords

vascular barrier
12
barrier function
12
survival rodent
12
rodent models
12
models systemic
12
systemic inflammation
12
ham8101 placebo
12
ham8101
9
effects humanized
8
function survival
8

Similar Publications

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Vascularized human brain organoids: current possibilities and prospects.

Trends Biotechnol

January 2025

Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:

Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Eli Lilly and Company, Indianapolis, IN, USA.

Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Gladstone Institutes, UCSF, San Francisco, CA, USA.

Background: Cerebrovascular alterations and innate immune activation are key features of Alzheimer's disease (AD). However, the mechanisms that link blood-brain barrier disruption to neurodegeneration are poorly understood and well-defined druggable targets at the neurovascular interface are limited.

Method: By developing a multiomic and genetic loss-of-function pipeline, we reported the transcriptomic and global phosphoproteomic landscape of blood-induced microglia activation and the causal role for fibrin in induction of neurodegenerative genes and oxidative stress pathways in innate immune cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Cerebral amyloid angiopathy (CAA) co-occurs with neurodegeneration in Alzheimer's disease (AD). CAA is absent in many AD mouse models, rendering CAA difficult to study. Previous work has shown wild-derived WSB/EiJ (WSB) mice over-expressing APP/PS1 had increased CAA, and thus may be useful in investigating CAA-causing mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!