A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drug-mediation formation of nanohybrids for sequential therapeutic delivery in cancer cells. | LitMetric

Drug-mediation formation of nanohybrids for sequential therapeutic delivery in cancer cells.

Colloids Surf B Biointerfaces

Department of General Surgery, Laboratory of General Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University,Kongjiang Road No.1665, Shanghai 200092,China. Electronic address:

Published: March 2018

In order to overcome the multidrug resistance (MDR) of tumor cells, it is very important to develop nanocarriers which can effectively load drugs while releasing them in a sequential way. Herein, nanohybrids with such properties have been fabricated by a first loading of one anticancer drug onto a silicate nanodisk (Laponite (LP), 25 nm in diameter and 0.92 nm in thickness) and a subsequent assembly with a pH sensitive poly(N-vinylpyrrolidone) (PVP) as a protective layer, followed by a loading of with another anticancer drug. The resulting nanohybrids (LDPM) present a high drug encapsulation efficiency and long-term colloidal stability. However, if the two drugs are loaded onto LP before PVP decoration, the formed particles tend to form microsized aggregates with poor colloidal stability. In vitro release study indicates that LDPM can deliver the anticancer drugs in a sequential way, which can be further accelerated under acidic microenvironments mimicking both solid tumor and endo-lysosomal compartments, exerting synergistic anticancer cytotoxicity. The drug-mediated formation of nanocarriers may enlighten a design of novel nanoplatform for co-delivery of therapeutic agents, beyond anticancer drugs, in a combinative way for drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.12.046DOI Listing

Publication Analysis

Top Keywords

loading anticancer
8
anticancer drug
8
colloidal stability
8
anticancer drugs
8
anticancer
5
drug-mediation formation
4
formation nanohybrids
4
nanohybrids sequential
4
sequential therapeutic
4
therapeutic delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!