PI3K/AKT signaling is essential in regulating pathophysiology of osteoarthritis (OA). However, its potential modulatory role in early OA progression has not been investigated yet. Here, a mouse destabilization OA model in the tibia was used to investigate roles of PI3K/AKT signaling in the early subchondral bone changes and OA pathological process. We revealed a significant increase in PI3K/AKT signaling activation which was associated with aberrant bone formation in tibial subchondral bone following destabilizing the medial meniscus (DMM), which was effectively prevented by treatment with PI3K/AKT signaling inhibitor LY294002. PI3K/AKT signaling inhibition attenuated articular cartilage degeneration. Serum and bone biochemical analyses revealed increased levels of MMP-13, which was found expressed mainly by osteoblastic cells in subchondral bone. However, this MMP-13 induction was attenuated by LY294002 treatment. Furthermore, PI3K/AKT signaling was found to enhance preosteoblast proliferation, differentiation, and expression of MMP-13 by activating NF-κB pathway. In conclusion, inhibition of PI3K/AKT/NF-κB axis was able to prevent aberrant bone formation and attenuate cartilage degeneration in OA mice.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26460DOI Listing

Publication Analysis

Top Keywords

pi3k/akt signaling
28
subchondral bone
16
bone
8
aberrant bone
8
bone formation
8
treatment pi3k/akt
8
cartilage degeneration
8
signaling
7
pi3k/akt
6
blocking pi3k/akt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!