In situ monitoring of the formation of emissive complexes is essential to enable the development of rational synthesis protocols, to provide accurate control over the generation of structure-related properties (such as luminescence) and to facilitate the development of new compounds. In situ luminescence analysis of coordination sensors (ILACS) utilizes the sensitivity of the spectroscopic properties of lanthanide ions to their coordination environment to detect structural changes during crystallization processes. Here, ILACS was utilized to monitor the formation of [Eu(bipy)(NO)] (bipy = 2,2'-bipyridine) during co-precipitation synthesis. Validity of the ILACS results was ensured by concomitant utilization of in situ monitoring of other reaction parameters, including in situ measurements of pH value, ionic conductivity, and infrared spectra, as well as ex situ and synchrotron-based in situ X-ray diffraction analyses. Gradual desolvation of the Eu ions and attachment of ligands were detected by an exponential increase of the intensity of the D → F (J = 0-4) transitions in the emission spectrum. Additionally, the in situ emission spectra show a decrease in the crystallization rate and an increase in the induction time in response to a reduction in the concentration of the starting solutions from 12 mM until crystallization ceased at starting reactant concentrations <6 mM. An increase to a three-fold higher concentration leads to the formation of a reaction intermediate, and its stability was determined to be highly concentration-dependent. The in situ luminescence measurements also demonstrated the existence of a ligand exchange process within the [Eu(bipy)(NO)] complex upon addition of a phen (phen = 1,10'-phenanthroline) solution and the generation of a new phen-containing emissive complex. In attempting to solve the structure of this new phen-containing complex, a different, but nevertheless previously unsynthesized complex, [Eu(phen)(NO)]bipy, was obtained, which shows characteristic Eu luminescence in the red spectral range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp07142f | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Karlsruhe Institute of Technology KIT, Institute for Chemical Technology and Polymer Chemistry, Kaiserstr. 12, Fakultät für Chemie, 76131, Karlsruhe, GERMANY.
In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Health Sciences, China Medical University, Shenyang 110122, China. Electronic address:
A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ.
View Article and Find Full Text PDFTalanta
January 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China. Electronic address:
Monitoring of p-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) in human urine and environmental water is of great importance for human health assessment and environmental protection, as they are both urinary metabolites of some poisonous pesticides and priority environmental pollutants. However, efficient extraction of trace levels of PNP and PNMC from complex matrices remains challenging. This study presented the synthesis of histidine-modified ZIF-90 on natural eggshell membrane (ESM@His-ZIF-90) via a facile one-step in-situ growth strategy, and its application as an adsorbent for dispersive membrane extraction (DME) of PNP and PNMC in human urine and environmental water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!