A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of bistrand abasic sites and proximate orientation on DNA global structure and duplex energetics. | LitMetric

Bistrand lesions embedded within a single helical turn of tridecameric deoxyoligonucleotide duplexes represent a model system for exploring the impact of clustered lesions that occur in vivo and pose a significant challenge to cellular repair machineries. Such investigations are essential for understanding the forces that dictate lesion-induced mutagenesis, carcinogenesis, and cytotoxicity within a context that mimics local helical perturbations caused by an ionizing radiation event. This study characterizes the structural and energy profiles of DNA duplexes harboring synthetic abasic sites (tetrahydrofuran, F) as models of clustered bistrand abasic (AP) lesions. The standard tridecameric dGCGTACCCATGCG·dCGCATGGGTACGC duplex is employed to investigate the energetic impact of single and bistrand AP sites by strategically replacing one or two bases within the central CCC/GGG triplet. Our combined analysis of temperature-dependent UV and circular dichroism (CD) profiles reveals that the proximity and relative orientation of AP sites within bistrand-damaged duplexes imparts a significant thermodynamic impact. Specifically, 3'-staggered lesions (CCF/GFG) exert a greater destabilizing effect when compared with their 5'-counterpart (FCC/GFG). Moreover, a duplex harboring the central bistrand AP lesion (CFC/GFG) is moderately destabilized yet exhibits distinct properties relative to both the 3' and 5'-orientations. Collectively, our energetic data are consistent with structural studies on bistrand AP-duplexes of similar sequence in which a 3'-staggered lesion exerts the greatest perturbation, a finding that provides significant insight regarding the impact of orientation on lesion repair processing efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175389PMC
http://dx.doi.org/10.1002/bip.23098DOI Listing

Publication Analysis

Top Keywords

bistrand abasic
8
abasic sites
8
impact
5
bistrand
5
impact bistrand
4
sites
4
sites proximate
4
proximate orientation
4
orientation dna
4
dna global
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!