Nerve agents still represent a serious threat to civilian and military personnel as demonstrated by the violent conflict in the Middle East. For verification of poisoning, covalent adducts with endogenous proteins (e.g., human serum albumin, HSA) are valuable long-term biomarkers. Accordingly, we developed a microbore liquid chromatography-electrospray ionization mass spectrometry/high-resolution mass spectrometry (μLC-ESI MS/HR MS) method for simultaneous detection of HSA-adducts with the V-type nerve agents VX, Chinese VX (CVX), and Russian VX (RVX). Following Pronase-catalyzed proteolysis, novel disulfide-adducts were detected in addition to phosphonylated tyrosine residues. Dipeptide disulfide-adducts were formed between the thiol-containing leaving group of the V-type nerve agents (2-(diisopropylamino)ethanethiol, DPAET, for VX and 2-(diethylamino)ethanethiol, DEAET, for CVX and RVX) and the free thiol group of Cys in HSA (DPAET-CysPro, DEAET-CysPro). We also identified tripeptide disulfide-adducts containing Cys (MetProCys-DPAET, MetProCys-DEAET) and to a lesser extent Cys (AspIleCys-DPAET, AspIleCys-DEAET). Synthetic tripeptide references were used for confirmation of the postulated structures by μLC-ESI MS/HR MS. Lower limits of detection were determined in human plasma, being nearly identical for the three V-type nerve agents, and corresponded to 1-6 μM nerve agent for tyrosine-adducts, 1-3 μM nerve agent for CysPro-adducts, and 6 μM nerve agent for MetProCys-adducts, thus covering concentrations of toxicological relevance. Characterization of proteolysis kinetics revealed stable plateaus for all adducts being reached between 60 and 90 min at 37 °C. Adduct formation kinetics were characterized by simultaneously monitoring the V-type nerve agent, its leaving group, and the corresponding disulfide dimer. Furthermore, adduct formation patterns were investigated as a function of the molar ratio of HSA to V-type nerve agent. Graphical abstract Modification of human serum albumin (HSA) by V-type nerve agents Chinese VX (CVX) and RussianVX (RVX). Various tyrosine residues (Tyr???)n (e.g. most reactive Tyr411) were phosphonylated and disulfide-adducts were formed between the thiol-containing leaving group 2-(diethylamino)ethanethiol (DEAET) and at least three cysteine residues (Cys34, Cys448 and Cys514). Pronase-mediated proteolysis produced low-molecular cleavage products including phosphonylated tyrosines, dipeptide (Cys34Pro) and tripeptide (MetProCys448, AspIleCys514) disulfide-adducts that were detected by microbore liquid chromatography-electrospray ionization mass spectrometry/high-resolution mass spectrometry (μLC-ESI MS/HR MS).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-017-0787-7DOI Listing

Publication Analysis

Top Keywords

v-type nerve
28
nerve agent
24
nerve agents
20
μlc-esi ms/hr
12
leaving group
12
μm nerve
12
nerve
11
simultaneous detection
8
phosphonylated tyrosines
8
human serum
8

Similar Publications

V-type nerve agents are exceedingly toxic chemical warfare agents that irreversibly inhibit acetylcholinesterase (AChE), leading to acetylcholine accumulation in synapses and the disruption of neurotransmission. VG or O.O-diethyl S-(diethylamino)ethyl phosphorothiolate was the first compound of this class that was synthesized.

View Article and Find Full Text PDF

Sulfonatocalix[4]arene-Based Scavengers for V-Type Nerve Agents with Enhanced Detoxification Activity.

Chemistry

December 2024

Fachbereich Chemie - Organische Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany.

Synthetic small molecule scavengers that rapidly detoxify nerve agents in vivo allow (pre)treatment of nerve agent poisoning. However, scavengers that detoxify persistent V-type nerve agents at pH 7.4 and 37 °C with sufficient efficiency are still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a new V-shaped titanium cable and pedicle screw fixation system for treating lumbar spondylolysis in young adults, addressing limitations of existing strategies.* -
  • Twenty-one patients were treated at a military hospital, and various metrics like surgery duration and blood loss were recorded, along with long-term recovery assessments using different evaluation scales.* -
  • After one year, all patients completed follow-ups, with one experiencing minor complications, and results indicated significant improvements in pain and function post-surgery.*
View Article and Find Full Text PDF

The reactivation kinetic analysis, molecular docking, and dynamics of oximes against three V-type nerve agents inhibited four human cholinesterases.

Chem Biol Interact

June 2024

Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE.

View Article and Find Full Text PDF

The expeditious detection and quantification of V-series nerve agents (VX) on potentially contaminated surfaces are crucial for the prevention of regional conflict incidents, acts of terrorism, or illicit activities. However, the low volatility and high toxicity of VX make these tasks challenging. Herein, we designed two novel colorimetric thin polymeric films to rapidly and sensitively detect demeton-S, a VX mimic, in contaminated areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!