Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >10 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34 HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34 HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4 T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751878 | PMC |
http://dx.doi.org/10.1016/j.omtm.2017.11.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!