The ability to detect the incursion of an invasive species or destroy the last individuals during an eradication program are some of the most difficult aspects of invasive species management. The presence of foxes in Tasmania is a contentious issue with recent structured monitoring efforts, involving collection of carnivore scats and testing for fox DNA, failing to detect any evidence of foxes. Understanding the likelihood that monitoring efforts would detect fox presence, given at least one is present, is therefore critical for understanding the role of scat monitoring for informing the response to an incursion. We undertook trials to estimate the probability of fox scat detection through monitoring by scat-detector dogs and person searches and used this information to critically evaluate the power of scat monitoring efforts for detecting foxes in the Tasmanian landscape. The probability of detecting a single scat present in a 1-km survey unit was highest for scat-detector dogs searches (0.053) compared with person searches (x¯≅0.015) for each 10 km of search effort. Simulation of the power of recent scat monitoring efforts undertaken in Tasmania from 2011 to 2015 suggested that single foxes would have to be present in at least 20 different locations or fox breeding groups present in at least six different locations, in order to be detected with a high level of confidence (>0.80). We have shown that highly structured detection trials can provide managers with the quantitative tools needed to make judgments about the power of large-scale scat monitoring programs. Results suggest that a fox population, if present in Tasmania, could remain undetected by a large-scale, structured scat monitoring program. Therefore, it is likely that other forms of surveillance, in conjunction with scat monitoring, will be necessary to demonstrate that foxes are absent from Tasmania with high confidence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756840PMC
http://dx.doi.org/10.1002/ece3.3694DOI Listing

Publication Analysis

Top Keywords

scat monitoring
24
monitoring efforts
16
monitoring
10
invasive species
8
scat
8
scat-detector dogs
8
person searches
8
power scat
8
fox
6
tasmania
5

Similar Publications

Background: Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed.

Objective: We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset.

View Article and Find Full Text PDF

Wildlife diseases are major players in local and global extinctions. Effective disease surveillance, management and conservation strategies require accurate estimates of pathogen prevalence. Yet pathogen detection in wild animals remains challenging.

View Article and Find Full Text PDF

The prevalence of microplastics (MPs, <5 mm) in natural environments presents a formidable global environmental threat MPs can be found from the Arctic to Antarctica, including glaciers. Despite their widespread distribution, studies on MP accumulation in apex predators inhabiting Polar Regions remain limited. The objective of this study was to conduct a comprehensive examination, for the first time, of MP bioaccumulation in various organs and tissue of Adélie penguins.

View Article and Find Full Text PDF

Plastic pollution is a widespread and growing concern due to its transformation into microplastics (MPs), which can harm organisms and ecosystems. This study, aimed to identify plastic pollution in the feces of terrestrial vertebrates using convenience sampling both inside and outside protected areas in Western Thailand. We hypothesized that MPs are likely to be detectable in the feces of all vertebrate species, primarily in the form of small black fragments.

View Article and Find Full Text PDF

Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!