The Tianshan Mountains, located in arid Central Asia, have a humid climate and are biodiversity hotspots. Here, we aimed to clarify whether the pattern of species diversity and the phylogenetic structure of plant communities is affected by environmental variables and glacial refugia. In this study, plant community assemblies of 17 research sites with a total of 35 sample plots were investigated at the grassland/woodland boundaries on the Tianshan Mountains. Community phylogeny of these plant communities was constructed based on two plant DNA barcode regions. The indices of phylogenetic diversity and phylogenetic community structure were calculated for these sample plots. We first estimated the correlation coefficients between species richness (SR) and environmental variables as well as the presence of glacial refugia. We then mapped the significant values of indices of community phylogeny (PD, RPD, NRI, and NTI) to investigate the correlation between community phylogeny and environmental structure or macrozones in the study area. The results showed that a significantly higher value of SR was obtained for the refugial groups than for the colonizing groups ( < 0.05); presence of refugia and environmental variables were highly correlated to the pattern of variation in SR. Indices of community phylogeny were not significantly different between refugial and colonizing regions. Comparison with the humid western part showed that plant communities in the arid eastern part of the Tianshan Mountains tended to display more significant phylogenetic overdispersion. The variation tendency of the PhyloSor index showed that the increase in macro-geographical and environmental distance did not influence obvious phylogenetic dissimilarities between different sample plots. In conclusion, glacial refugia and environmental factors profoundly influenced the pattern of SR, but community phylogenetic structure was not affected by glacial refugia among different plant communities on the Tianshan Mountains. This pattern of community phylogenetic structure could have resulted from shared ancestry and species pool among these sample plots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733559 | PMC |
http://dx.doi.org/10.3389/fpls.2017.02134 | DOI Listing |
Mar Pollut Bull
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China.
The outbreak of cyanobacterial blooms poses an increasingly serious ecological challenge. Our previous study found that calcium peroxide (CaO) has a high inhibitory effect on cyanobacteria, along with a practical application potential in cyanobacteria-dominated lakes. In order to explore the sensitivity of aquatic ecosystems to CaO treatment, we conducted this study to elucidate the ecological impact of CaO on Vallisneria natans (V.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China. Electronic address:
Small burrowing herbivores play a crucial role in maintaining structure and function of grassland ecosystems. To date, our understanding of whether practicing ecological uniqueness can enhance plant diversity conservation under small herbivore disturbances remains limited. Here, we investigate the ecological uniqueness of plant communities, which include habitats disturbed and undisturbed by plateau pikas.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFNat Food
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.
Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!