Four-and-a-half LIM protein2 (FHL2) is a member of the LIM-only protein family, which plays a critical role in tumorigenesis. We previously reported that FHL2 is upregulated and plays an oncogenic role in glioblastoma (GBM), the most common and aggressive brain tumor. GBM is also marked by amplification of the epidermal growth factor receptor (EGFR) gene and its mutations, of which EGFRvIII is the most common and functionally significant. Here we report that FHL2 physically interacts with the wild-type EGFR and its mutated EGFRvIII form in GBM cells. Expression of FHL2 caused increased EGFR and EGFRvIII protein levels and this was due to an increase in protein stability rather than an increase in EGFR mRNA expression. In contrast, FHL2 knockdown using RNA interference reduced EGFR and EGFRvIII protein expression and the phosphorylation levels of EGFR and AKT. Consistent with these features, EGFR expression was significantly lower in mouse FHL2-null astrocytes, where reintroduction of FHL2 was able to restore EGFR levels. Using established GBM cell lines and patient-derived neurosphere lines, FHL2 silencing markedly induced cell apoptosis in EGFRvIII-positive cells. Targeting FHL2 significantly prevented EGFRvIII-positive GBM tumor growth in vivo. FHL2 expression also positively correlated with EGFR expression in GBM samples from patients. Taken together, our results demonstrate that FHL2 interacts with EGFR and EGFRvIII to increase their levels and this promotes glioma growth, representing a novel mechanism that may be therapeutically targetable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691187 | PMC |
http://dx.doi.org/10.1038/s41388-017-0068-0 | DOI Listing |
J Neurooncol
February 2025
Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA.
Context: Chimeric antigen receptor (CAR) T cell therapy is an exciting modality of immunotherapy that has revolutionized the treatment of hematologic malignancies. However, translating this success to malignant gliomas such as glioblastoma (GBM) and diffuse midline glioma (DMG) remains a formidable challenge due to multiple biologic, anatomic, and immunologic factors. Despite these hurdles, a number of clinical trials deployed over the last decade have increased optimism for the potential of CAR T cell therapy in glioma treatment.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
Eur J Pharm Biopharm
January 2025
School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil. Electronic address:
Nat Commun
November 2024
Brain Tumor Immunotherapy and Biology, Department of Biomedicine, University of Basel, Basel, Switzerland.
A significant challenge for chimeric antigen receptor (CAR) T cell therapy against glioblastoma (GBM) is its immunosuppressive microenvironment, which is densely populated by protumoral glioma-associated microglia and macrophages (GAMs). Myeloid immune checkpoint therapy targeting the CD47-signal regulatory protein alpha (SIRPα) axis induces GAM phagocytic function, but CD47 blockade monotherapy is associated with toxicity and low bioavailability in solid tumors. In this work, we engineer a CAR T cell against epidermal growth factor receptor variant III (EGFRvIII), constitutively secreting a signal regulatory protein gamma-related protein (SGRP) with high affinity to CD47.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!