Mitochondria fission and mitophagy are fundamentally crucial to cellular physiology and play important roles in cancer progression. Developing a comprehensive understanding of the molecular mechanism underlying mitochondrial fission and mitophagy will provide novel strategies for cancer prevention and treatment. Actin has been shown to participate in mitochondrial fission and mitophagy regulation. Cofilin is best known as an actin-depolymerizing factor. However, the molecular mechanism by which cofilin regulates mitochondrial fission and mitophagy remains largely unknown. Here we report that knockdown of cofilin attenuates and overexpression of cofilin potentiates mitochondrial fission as well as PINK1/PARK2-dependent mitophagy induced by staurosporine (STS), etoposide (ETO), and carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Cofilin-mediated-PINK1 (PTEN-induced putative kinase 1) accumulation mainly depends on its regulation of mitochondrial proteases, including peptidase mitochondrial processing beta (MPPβ), presenilin-associated rhomboid-like protease (PARL), and ATPase family gene 3-like 2 (AFG3L2), via mitochondrial membrane potential activity. We also found that the interaction and colocalization of G-actin/F-actin with cofilin at mitochondrial fission sites undergo constriction after CCCP treatment. Pretreatment with the actin polymerization inhibitor latrunculin B (LatB) increased and actin-depolymerization inhibitor jasplakinolide (Jas) decreased mitochondrial translocation of actin induced by STS, ETO, and CCCP. Both LatB and Jas abrogated CCCP-mediated mitochondrial fission and mitophagy. Our data suggest that G-actin is the actin form that is translocated to mitochondria, and the actin-depolymerization activity regulated by cofilin at the mitochondrial fission site is crucial for inducing mitochondrial fission and mitophagy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-017-0064-4 | DOI Listing |
Nat Commun
December 2024
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information.
View Article and Find Full Text PDFCell Death Dis
December 2024
Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong, 518000, China.
TAR DNA-binding protein 43 (TDP-43) has emerged as a critical player in neurodegenerative disorders, with its dysfunction implicated in a wide spectrum of diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer's disease (AD). This comprehensive review explores the multifaceted roles of TDP-43 in both physiological and pathological contexts. We delve into TDP-43's crucial functions in RNA metabolism, including splicing regulation, mRNA stability, and miRNA biogenesis.
View Article and Find Full Text PDFMol Metab
December 2024
Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy. Electronic address:
Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity exists in pancreatic cancer, impacting patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. Here, we review the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!