Corals, like other cnidarians, are venomous animals that rely on stinging cells (nematocytes) and their toxins to catch prey and defend themselves against predators. However, little is known about the chemical arsenal employed by stony corals, despite their ecological importance. Here, we show large differences in the density of nematocysts and whole-body hemolytic activity between different species of reef-building corals. In the branched coral Stylophora pistillata, the tips of the branches exhibited a greater hemolytic activity than the bases. Hemolytic activity and nematocyst density were significantly lower in Stylophora that were maintained for close to a year in captivity compared to corals collected from the wild. A cysteine-containing actinoporin was identified in Stylophora following partial purification and tandem mass spectrometry. This toxin, named Δ-Pocilopotoxin-Spi1 (Δ-PCTX-Spi1) is the first hemolytic toxin to be partially isolated and characterized in true reef-building corals. Loss of hemolytic activity during chromatography suggests that this actinoporin is only one of potentially several hemolytic molecules. These results suggest that the capacity to employ offensive and defensive chemicals by corals is a dynamic trait within and between coral species, and provide a first step towards identifying the molecular components of the coral chemical armament.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762905 | PMC |
http://dx.doi.org/10.1038/s41598-017-18355-1 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.
View Article and Find Full Text PDFPathogens
January 2025
Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico.
The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
The overprescription of antibiotics in medicine and agriculture has accelerated the development and spread of antibiotic resistance in bacteria, which severely limits the arsenal available to clinicians for treating bacterial infections. This work discovered a new class of heteroarylcyanovinyl quinazolones and quinazolone pyridiniums to surmount the increasingly severe bacterial resistance. Bioactive assays manifested that the highly active compound exhibited strong inhibition against MRSA and with extremely low MICs of 0.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!