Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary.

Nat Commun

Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, 51005, Tartu, Estonia.

Published: January 2018

DNA-based snapshots of ancient vegetation have shown that the composition of high-latitude plant communities changed considerably during the late Quaternary. However, parallel changes in biotic interactions remain largely uninvestigated. Here we show how mutualisms involving plants and heterotrophic organisms varied during the last 50,000 years. During 50-25 ka BP, a cool period featuring stadial-interstadial fluctuations, arbuscular mycorrhizal and non-N-fixing plants predominated. During 25-15 ka BP, a cold, dry interval, the representation of ectomycorrhizal, non-mycorrhizal and facultatively mycorrhizal plants increased, while that of N-fixing plants decreased further. From 15 ka BP, which marks the transition to and establishment of the Holocene interglaciation, representation of arbuscular mycorrhizal plants decreased further, while that of ectomycorrhizal, non-mycorrhizal, N-fixing and wind-pollinated plants increased. These changes in the mutualist trait structure of vegetation may reflect responses to historical environmental conditions that are without current analogue, or biogeographic processes, such as spatial decoupling of mutualist partners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5762924PMC
http://dx.doi.org/10.1038/s41467-017-02421-3DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
ectomycorrhizal non-mycorrhizal
8
mycorrhizal plants
8
plants increased
8
plants decreased
8
plants
6
ancient environmental
4
environmental dna
4
dna reveals
4
reveals shifts
4

Similar Publications

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.

View Article and Find Full Text PDF

sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato.

Plant Cell Environ

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.

Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.

View Article and Find Full Text PDF
Article Synopsis
  • Land use and agricultural practices significantly impact soil fungal communities, which in turn affect overall soil health.
  • A study examined fungal communities across different soil layers (up to 80 cm) in four types of boreal soils: organic crop rotation, conventional crop rotation, meadow, and forest.
  • Findings revealed that soil type influenced specific fungal groups, with forests showing higher beneficial fungi, meadows having more decomposing fungi, and crop rotations featuring increased plant pathogens, highlighting the need to analyze subsoils in soil health research.
View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi as a Salt Bioaccumulation Mechanism for the Establishment of a Neotropical Halophytic Fern in Saline Soils.

Microorganisms

December 2024

Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil.

is a halophytic pantropical invasive fern growing in mangroves and swamps. Its association with arbuscular mycorrhizal fungi (AMF) has been reported in Asia. AMF and their symbiosis (AM) commonly colonise the absorption organs of terrestrial plants worldwide.

View Article and Find Full Text PDF

Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses.

Microorganisms

November 2024

State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!