Theranostics with the ability to simultaneous monitoring of treatment progress and controlled delivery of therapeutic agents has become as an emerging therapeutic paradigm in cancer therapy. In this study, we have developed a novel surface functionalized iron oxide nanoparticle using polyethyleneimine and glutathione for targeted curcumin (CUR) delivery and acceptable pH sensitive character. The developed magnetic nanoparticles (MNPs) were physicochemically characterized by FT-IR, XRD, FE-SEM and TEM. The MNPs was obtained in spherical shape with diameter of 50 nm. CUR was efficiently loaded into the MNPs and then in vitro release analyses were evaluated and showed that the prepared MNPs could release higher amount of CUR in acidic medium compared to neutral medium due to the pH sensitive property of the coated polymer. MTT assay confirmed the superior toxicity of CUR loaded MNPs compared to the control nanoparticles. Higher cellular uptake of the MNPs than negative control cells was demonstrated in SK-N-MC cell line. In vitro assessment of MRI properties showed that synthesized MNPs could be used as MRI imaging agent. Furthermore, according to hemolysis assay, the developed formulation exhibited suitable hemocompatibility. In vivo blood circulation analysis of the MNPs also exhibited enhanced serum bioavailability up to 2.5 fold for CUR loaded MNPs compared with free CUR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2018.1427013 | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:
Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Int J Biol Macromol
December 2024
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:
As a clinically effective treatment for bladder cancer (BC), intravesical instillation still suffers from the debilitating efficacy triggered by frequent urination. Herein, the magnetic hydrogel microspheres (DOX-mMSs) with the incorporation of magnetic nanoparticles (MNPs) and doxorubicin (DOX) into polyvinyl alcohol (PVA)/chitosan (CS) are developed for intravesical instillation. The magnetic force initiated by the applied magnetic field (AMF) enables the long-term retention of DOX-mMSs in the bladder, and the convenient injection and excretion from the bladder can be accomplished in virtue of the micron size of the DOX-mMSs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran. Electronic address:
We optimized the loading and release processes of Ciprofloxacin (CIP) on FeO/Chitosan (FCS) magnetic nanoparticles (MNPs) for drug delivery applications. The FeO MNPs were synthesized via the coprecipitation method and subsequently coated with Chitosan to enhance their properties. Ciprofloxacin was used as a model drug.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia.
Melanoma, known for its aggressive metastatic potential, poses significant treatment challenges. Despite the potent antiproliferative effects of anticancer drugs, systemic toxicity and low water solubility limit their efficacy. This study addresses these challenges by employing magnetite (FeO) nanobioconjugates as a drug delivery system, aimed at enhancing drug solubility and reducing off-target effects in melanoma therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!