Insulin secretion from pancreatic β cells in response to high glucose (HG) critically depends on the inhibition of K channel activity in HG. It is generally believed that HG-induced effects are mediated by the increase in intracellular ATP, but here, we showed that, in INS-1 cells, endocytosis of K channel plays a major role. Upon HG stimulation, resting membrane potential depolarized by 30.6 mV (from -69.2 to -38.6 mV) and K conductance decreased by 91% (from 0.243 to 0.022 nS/pF), whereas intracellular ATP was increased by only 47%. HG stimulation induced internalization of K channels, causing a significant decrease in surface channel density, and this decrease was completely abolished by inhibiting endocytosis using dynasore, a dynamin inhibitor, or a PKC inhibitor. These drugs profoundly inhibited HG-induced depolarization. Our results suggest that the control of K channel surface density plays a greater role than ATP-dependent gating in regulating β cell excitability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2017.12.049 | DOI Listing |
RSC Adv
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
Int J Gen Med
January 2025
Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 73000, People's Republic of China.
Background: Aggressive biological behavior leads to unfavorable survival of colorectal cancer (CRC) patients. Dysregulation of TXNIP has been reported to be associated with the occurrence, proliferation and metastasis of malignancies such as liver cancer, lung cancer, kidney cancer, gastric cancer, and pancreatic cancer. MiR-424-5p has been reported as a negative regulator of TXNIP involved in lipopolysaccharide-induced acute kidney injury.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.
View Article and Find Full Text PDFACS Nano
January 2025
Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
Pancreatic cancer therapies such as chemotherapy and immunotherapy are hindered by the dense extracellular matrix known as physical barriers, leading to heterogeneity impeding the effective penetration of chemotherapeutic agents and activation of antitumor immune responses. To address this challenge, we developed a hybrid nanoassembly with a distinct core-satellite-like heterostructure, PLAF@P/T-PD, which is responsive to both internal pH/redox and external ultrasound stimulations. This heterostructural nanoassembly features a polymersome core encapsulating an ultrasound contrast agent perfluoropentane and a chemotherapeutic agent Taxol (PLAF@P/T) electrostatically coated with satellite-like polyplexes carrying an immune agonist dsDNA (PD), which brings about synergistic functions inside the pancreatic tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!