Chemical-synthesized silver nanowires have been proven as an efficient architecture for plasmonic waveguides, but the high propagation loss prevents their widely applications. Here, we demonstrate that the propagation distance of the plasmons along a silver nanowire can be extended if this nanowire was placed on a dielectric multilayer substrate containing a photonic band gap but not placed on a commonly used glass substrate. The propagation distance at 630 nm wavelength can reach 16 μm, even when the silver nanowire is as thin as 90 nm in diameter. Experimental and simulation results further show that the polarization of this propagating plasmon mode was nearly parallel to the surface of the dielectric multilayer, so it can be excited by a transverse-electric polarized Bloch surface wave propagating along a polymer nanowire with diameter at only about 170 nm on the same dielectric multilayer. Numerical simulations were also carried out and are consistent with the experiment results. Our work provides a platform with which to extend the propagation distance of the plasmonic waveguide and also for the integration between photonic and plasmonic waveguides on the nanometer scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814343PMC
http://dx.doi.org/10.1021/acs.nanolett.7b04693DOI Listing

Publication Analysis

Top Keywords

propagation distance
16
dielectric multilayer
16
silver nanowire
12
plasmonic waveguide
8
multilayer substrate
8
plasmonic waveguides
8
nanowire
5
extending propagation
4
distance
4
silver
4

Similar Publications

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF
Article Synopsis
  • Sweetpotato, a major crop in sub-Saharan Africa, has diverse accessions in Niger, Nigeria, and Benin that have yet to be fully studied for their genetic potential.
  • The study utilized Diversity Arrays Technology (DArTseq) to genotype 271 sweetpotato accessions, revealing high genetic diversity with varying degrees across different chromosomes.
  • Results indicated four distinct populations based on genetic structure, showcasing a mix of accessions from various countries and highlighting unique traits within Nigerian and Beninese landraces.
View Article and Find Full Text PDF

Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).

View Article and Find Full Text PDF

Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates [Bluvstein et al., Nature (London) 626, 58 (2024)NATUAS0028-083610.

View Article and Find Full Text PDF

Digital Feedback Loop in Paraxial Fluids of Light: A Gate to New Phenomena in Analog Physical Simulations.

Phys Rev Lett

December 2024

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!