Mirror-self recognition (MSR) is a behavioral indicator of self-awareness in young children and only a few other species, including the great apes, dolphins, elephants and magpies. The emergence of self-awareness in children typically occurs during the second year and has been correlated with sensorimotor development and growing social and self-awareness. Comparative studies of MSR in chimpanzees report that the onset of this ability occurs between 2 years 4 months and 3 years 9 months of age. Studies of wild and captive bottlenose dolphins (Tursiops truncatus) have reported precocious sensorimotor and social awareness during the first weeks of life, but no comparative MSR research has been conducted with this species. We exposed two young bottlenose dolphins to an underwater mirror and analyzed video recordings of their behavioral responses over a 3-year period. Here we report that both dolphins exhibited MSR, indicated by self-directed behavior at the mirror, at ages earlier than generally reported for children and at ages much earlier than reported for chimpanzees. The early onset of MSR in young dolphins occurs in parallel with their advanced sensorimotor development, complex and reciprocal social interactions, and growing social awareness. Both dolphins passed subsequent mark tests at ages comparable with children. Thus, our findings indicate that dolphins exhibit self-awareness at a mirror at a younger age than previously reported for children or other species tested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5761843 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189813 | PLOS |
Wellcome Open Res
December 2024
Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, California, USA.
We present a genome assembly from an individual male (the striped dolphin; Chordata; Mammalia; Artiodactyla; Delphinidae). The genome sequence has a total length of 2,691.40 megabases.
View Article and Find Full Text PDFNat Rev Chem
January 2025
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
Conserv Biol
January 2025
Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.
Several legal acts mandate that management agencies regularly assess biological populations. For species with distinct markings, these assessments can be conducted noninvasively via capture-recapture and photographic identification (photo-ID), which involves processing considerable quantities of photographic data. To ease this burden, agencies increasingly rely on automated identification (ID) algorithms.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina, USA.
Rationale: Wildlife scientists are quantifying steroid hormones in a growing number of tissues and employing novel methods that must undergo validation before application. This study tested the accuracy and precision of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for use on blubber samples from short-finned pilot whales (Globicephala macrorhynchus). We expanded upon a method for corticosteroid quantification by adding analytes and optimizing internal standard (IS) application.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 75005 Paris, France.
The common bottlenose dolphin () exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!