Encrusting cheilostome bryozoans structurally resemble aggregates of small boxes, with both frontal and vertical walls capable of resisting forces generated by water-borne debris or predators. Both the skeletal strength and design of the walls are important in determining the relative ability of the colony to resist damage. Two mechanical tests, puncture and compression, performed on nine species of tropical bryozoans reveal significant differences in skeletal strength both between species and between the outer and inner regions of colonies. Puncture stresses required to break through the frontal walls of zooids range from 0.8 to 291.0 MNm for edge zooids and from 1.1 to 457.4 MNm for inner zooids; compressive stresses required to damage the colony range from 4.4 to 16.9 MNm for edge regions and 6.5 to 27.2 MNm for inner regions. Ecological implications for these differences in skeletal strength are discussed with particular reference to resisting predation. From the mechanical test results, the material properties of shear strength (2.6-90.5 MNm) and compressive strength (8.2-110.0 MNm) are estimated for the frontal and vertical walls, respectively. Bryozoan wall material appears to be comparable in strength to such biological ceramics as coral, echinoid spine, bivalve shell, and vertebrate bone, but lower in strength than gastropod shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2307/1541285 | DOI Listing |
Med Sci Sports Exerc
November 2024
Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, FRANCE.
Purpose: Obesity may blunt exercise responsiveness to improve muscular adaptations. The effect of resistance training (RT) targeting different body regions on muscle and inflammatory markers is unclear. This study aimed to investigate the impact of upper (upper body exercises), lower (lower body exercises), or combined (upper body + lower body exercises) RT on muscle and inflammatory markers, body composition, and performance in overweight and obese men.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.
Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Jayhawk Athletic Performance Laboratory-Wu Tsai Human Performance Alliance, University of Kansas, University of Kansas, Lawrence, Kansas.
Philipp, NM, Blackburn, SD, Cabarkapa, D, and Fry, AC. The effects of a low-volume, high-intensity pre-season micro-cycle on neuromuscular performance in collegiate female basketball players. J Strength Cond Res 38(12): 2136-2146, 2024-The use of stretch-shortening cycle (SSC)-based measures of vertical jump performance to monitor responses to training exposures is common practice in sport science.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Sport Sciences, Waseda University, Saitama, Japan.
Walking patterns can differ between children and adults, both kinematically and kinetically. However, the detailed nature of the ankle pattern has not been clarified. We investigated musculature, biomechanics, and muscle activation strategies and their relevance to walking performance in preschool (PS) and school children (SC), with adults (AD) as reference.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!