An organo rare-earth metal complex has been employed as a highly efficient nucleophile in Ni(0)-catalyzed C-O bond functionalization. The optimized catalytic system which consists of Ni(cod), PCy, and t-BuONa could smoothly convert 1 equiv of naphthyl ethers to alkylated naphthalene analogues with 0.4 equiv of Ln(CHSiMe)(THF), delivering good to excellent yields. The reaction system could also activate the ArCH-O bond with mild base.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.7b03753 | DOI Listing |
Int J Cosmet Sci
January 2025
Department of Engineering Science, Osaka Electro-Communication University, Neyagawa, Japan.
Objective: This study aimed to identify structural changes in age-related curved hair (referred to as "YUGAMI" hair in Japanese) induced by cyclical extension using infrared (IR) spectroscopy coupled with chemometrics, such as multivariate curve resolution (MCR) and two-dimensional correlation spectroscopy (2DCOS).
Methods: The hair fibres were stretched at a strain level of 0.3-N, and this operation was counted as one cycle and was repeated 500 cycles.
Chemistry
January 2025
INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE, CHEMISTRY, HOMI BHABA ROAD, PASHAN, PUNE, 411008, PUNE, INDIA.
In this work, we have reduced CO2 with HBpin to afford borylated methanol product selectively in ~99% yield using Ce[N(SiMe3)2]3(THF)3 as a catalyst. This led to multigram scale isolation of methanol obtained from CO2 reduction via the hydrolysis of borylated methanol, this establishes the potential of Ce[N(SiMe3)2]3(THF)3 as an efficient homogeneous catalyst for the bulk scale methanol synthesis. A practical application of this catalytic system was also shown by reducing CO2-containing motorbike exhaust efficiently and selectively.
View Article and Find Full Text PDFChemistryOpen
January 2025
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the conversion of 5-enolpyruvate (PEP) and shikimic acid phosphate (S3P) to 5-enolpyruvylshikimic acid-3-phosphate (EPSP), releasing inorganic phosphate. This reaction is the sixth step of the shikimate pathway, which is a metabolic pathway used by microorganisms and plants for the biosynthesis of aromatic amino acids and folates but not in mammals. In the present study, the detailed reaction mechanism of EPSPS from Nicotiana tabacum (NtEPSPS) is revealed by quantum chemical calculations with the cluster approach.
View Article and Find Full Text PDFChemistry
January 2025
University of Regensburg, Inorganic Chemistry, Universitätsstrasse 31, D-93040, Regensburg, GERMANY.
The systematic nucleophilic functionalization of the cationic pentaphosphole ligand complex [Cp*Fe(η4-P5Me)][OTf] (A) with group 16/17 nucleophiles is reported. This method represents a highly reliable and versatile strategy for the design of novel transition-metal complexes featuring twofold substituted end-deck cyclo-P5 ligands, bearing unprecedented hetero-element substituents. By the reaction of A with classical group 16 nucleophiles, complexes of the type [Cp*Fe(η4-P5MeE)] (E = OEt (1), OtBu (2), SPh (3), SePh (4)) are obtained.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Design and Assembly of Functiaonal Nanostructures, YangQiao West Road 155#, 350002, Fuzhou, CHINA.
N2 reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH3) synthesis technology. However, it faces significant challenges, including high energy barriers of N2 activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!