The electrochemical reduction of nitrogen to ammonia on Au-based catalysts showed a reasonably high Coulombic efficiency. The pathway of this promising reaction, however, is not clear partially due to the lack of information on reaction intermediates. Herein, surface-enhanced infrared absorption spectroscopy (SEIRAS) was employed to study the reaction mechanisms of nitrogen reduction on an Au thin film for the first time. During the nitrogen reduction, the NH species was detected with bands at 1453 (H-N-H bending), 1298 (-NH wagging), and 1109 cm (N-N stretching) at potentials below 0 V against reversible hydrogen electrode. This result indicates that the nitrogen reduction reaction on Au surfaces follows an associative mechanism, and the N≡N bond in N tends to break simultaneously with the hydrogen addition. By comparison, no absorption band associated with N was observed on Pt surfaces under the same reaction condition. This result is consistent with the low efficiency of nitrogen reduction on Pt due to the much faster kinetics of hydrogen evolution reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b12101 | DOI Listing |
Environ Sci Technol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.
This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China.
Vehicle nitrogen oxides (NO) significantly increase nitrogen dioxide (NO) exposure in traffic-related environments. The NO/NO ratios are crucial for accurate NO modeling and are closely linked to public health concerns. In 2020, we used a mobile platform to follow test trucks (plume-chasing) that were installed with a portable emission measuring system (PEMS) on two restricted driving tracts.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, L69 3GJ, UK.
This work quantifies, through use of molecular dynamics (MD) simulations, the kinetic rates of physical surface processes occurring at a plasma-water interface. The probabilities of adsorption, absorption, desorption and scattering were computed for O, NO, NO, NO, OH, HO, HNO, HNO, and NO as they interact with the interface at three water temperatures: 298 K, 323 K, and 348 K. Species are categorised into the short-residence group (O, NO, NO, and NO) and the long-residence group (OH, HO, HNO, HNO, and NO) based on their mean surface residence time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!