Ifosfamide (IFA) is a potent alkylating antitumoral agent, but its use is limited by neurological side effects. IFA is a racemic mixture of two enantiomeric forms, R-IFA and S-IFA with a stereoselective metabolism by CYP3A4 and CYP2B6, leading either to bioactive or to toxic pathways. In three consecutive cases of pediatric patients who exhibited IFA-induced encephalopathy (IIE), genotyping of clinically relevant single-nucleotide polymorphisms associated with decreased CYP3A4 and CYP2B6 activities was performed. Genetic investigations revealed the presence of CYP2B6 rs4803419 (C>T) in one patient while the two others carried the CYP2B6*6 allelic variant. All patients carried CYP3A4 wild-type genotype (CYP3A4*1/*1). Because CYP2B6-deficient alleles may be responsible for an increased conversion of S-IFA into neurotoxic metabolites, screening for CYP2B6 polymorphisms may help to avoid IIE and improve clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/fcp.12345 | DOI Listing |
Front Pharmacol
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.
Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.
World J Gastrointest Oncol
January 2025
Department of Special Service, No. 988 Hospital of the Joint Service Support Force of PLA, Zhengzhou 450042, Henan Province, China.
The study by Yang presents a comprehensive investigation into the therapeutic potential of curcumin for gastric cancer (GC). Using network pharmacology, the researchers identified 48 curcumin-related genes, 31 of which overlap with GC targets. Key genes, including , , , , , and , are linked to poor survival in GC patients.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
November 2024
Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFFood Saf (Tokyo)
December 2024
Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
A Template system for the understanding of human CYP2J2-mediated reactions was constructed from the assembly of the ligands with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site, which were in common with other Template* systems for human CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 (Drug Metab Pharmacokinet 2016, 2017, 2019, 2020, 2021, 2022, 2023, 2024, and in press 2024). CYP2J2 system also includes ideas of bi-molecule binding of ligands on the Template. From their placements on the Template and rules for interaction modes, verifications of good and poor substrates, regio/stereo-selectivity, and inhibitory interaction became available faithfully for these ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!