AI Article Synopsis

  • The IL-17 cytokine family is important in various immune and autoimmune diseases, making it a key focus for diagnostics and therapies.
  • Researchers developed specific ligands that can differentiate between human IL-17F and IL-17A by identifying unique epitopes on each protein.
  • The study successfully created macrocyclic peptide binders with high selectivity and affinity for IL-17F and IL-17A, offering a method for targeting complex epitopes like those recognized by B cell receptors.

Article Abstract

The IL-17 cytokine family is associated with multiple immune and autoimmune diseases and comprises important diagnostic and therapeutic targets. This work reports the development of epitope-targeted ligands designed for differential detection of human IL-17F and its closest homologue IL-17A. Non-overlapping and unique epitopes on IL-17F and IL-17A were identified by comparative sequence analysis of the two proteins. Synthetic variants of these epitopes were utilized as targets for in situ click screens against a comprehensive library of synthetic peptide macrocycles with 5-mer variable regions. Single generation screens yielded selective binders for IL-17F and IL-17A with low cross-reactivity. Macrocyclic peptide binders against two distinct IL-17F epitopes were coupled using variable length chemical linkers to explore the physical chemistry of cooperative binding. The optimized linker length yielded a picomolar affinity binder, while retaining high selectivity. The presented method provides a rational approach towards targeting discontinuous epitopes, similar to what is naturally achieved by many B cell receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201704752DOI Listing

Publication Analysis

Top Keywords

macrocyclic peptide
8
cooperative binding
8
il-17f il-17a
8
epitope-targeted macrocyclic
4
peptide ligand
4
ligand picomolar
4
picomolar cooperative
4
binding interleukin-17f
4
interleukin-17f il-17
4
il-17 cytokine
4

Similar Publications

The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive.

View Article and Find Full Text PDF

Conformational Plasticity and Binding Affinity Enhancement Controlled by Linker Derivatization in Macrocycles.

Angew Chem Int Ed Engl

January 2025

Darmstadt University of Technology: Technische Universitat Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, 64287, Darmstadt, GERMANY.

Macrocycles are abundantly used by nature to enable cell-permeable bioactive molecules. Synthetic non-peptidic macrocycles are also increasingly considered as modalities for difficult-to-bind proteins but guidelines for macrocyclization are only beginning to emerge. Macrocycles are thought to constrain the available conformations but also to allow for residual flexibility, the latter being poorly understood.

View Article and Find Full Text PDF

Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by the presence of thioether cross-links called lanthionine and methyllanthionine, formed by dehydration of Ser/Thr residues and Michael-type addition of Cys side chains onto the resulting dehydroamino acids. Class II lanthipeptide synthetases are bifunctional enzymes responsible for both steps, thus generating macrocyclic natural products. ProcM is part of a group of class II lanthipeptide synthetases that are known for their remarkable substrate tolerance, having large numbers of natural substrates with highly diverse peptide sequences.

View Article and Find Full Text PDF

The Furan-Thiol-Amine Reaction Facilitates DNA-Compatible Thiopyrrole-Grafted Macrocyclization and Late-Stage Amine Transformation.

Org Lett

December 2024

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

We here report an efficient DNA-compatible furan-thiol-amine reaction for macrocyclization and late-stage amine transformation. This reaction, conducted under mild conditions, enables the facile cyclization of DNA-conjugated linear peptides into thiopyrrole-grafted macrocycles regardless of ring size or side-chain modification with good to excellent conversion yields. Additionally, this strategy was employed for the late-stage transformation of terminal amines, serving as critical intermediates in the construction of DNA-encoded peptide libraries.

View Article and Find Full Text PDF

Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!