We conceptually replicated three highly cited experiments on speed adaptation, by measuring drivers' experienced risk (galvanic skin response; GSR), experienced task difficulty (self-reported task effort; SRTE) and safety margins (time-to-line-crossing; TLC) in a single experiment. The three measures were compared using a nonparametric index that captures the criteria of constancy during self-paced driving and sensitivity during forced-paced driving. In a driving simulator, 24 participants completed two forced-paced and one self-paced run. Each run held four different lane width conditions. Results showed that participants drove faster on wider lanes, thus confirming the expected speed adaptation. None of the three measures offered persuasive evidence for speed adaptation because they failed either the sensitivity criterion (GSR) or the constancy criterion (TLC, SRTE). An additional measure, steering reversal rate, outperformed the other three measures regarding sensitivity and constancy, prompting a further evaluation of the role of control activity in speed adaptation. Practitioner Summary: Results from a driving simulator experiment suggest that it is not experienced risk, experienced effort or safety margins that govern drivers' choice of speed. Rather, our findings suggest that steering reversal rate has an explanatory role in speed adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00140139.2018.1426790DOI Listing

Publication Analysis

Top Keywords

speed adaptation
20
driving simulator
12
three measures
12
experienced risk
8
safety margins
8
steering reversal
8
reversal rate
8
adaptation
6
speed
6
three
5

Similar Publications

Why do patients with isolated PCL rupture experience no subjective knee joint instability during walking? An biomechanical study.

Front Bioeng Biotechnol

January 2025

Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical Universit, Guangzhou, China.

Objective: The aim of this study is to assess the kinematic changes in the knee joint during walking in patients with isolated PCL-deficiency (PCLD) to determine the presence of walking-related joint instability (mechanical instability-abnormal displacement form structural damage). Additionally, the study seeks to provide biomechanical insights into the observed differences between subjective and objective assessments.

Methods: 35 healthy volunteers and 27 patients with isolated PCLD (both involved and uninvolved sides) were included in the study.

View Article and Find Full Text PDF

Introduction: In individuals with chronic post-stroke hemiparesis, slow walking speed is a significant concern related to inadequate propulsion of the paretic limb. However, an overlooked factor is this population's altered morphology of the Achilles tendon, which may compromise the propulsive forces by the paretic limb. This study aimed to explore changes in Achilles tendon morphology, including gross thickness and intra-tendinous collagen fiber bundle organization, following stroke-induced brain lesions.

View Article and Find Full Text PDF

Background: Fear of Falling (FOF) significantly affects Parkinson's Disease (PD) patients by limiting daily activities and reducing quality of life (QoL). Though common in PD, the relation between FOF, mobility, and QoL remains unclear. This study examines the connections between FOF, gait, daily motor activity, and QoL in PD patients.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Purpose: The purpose of this case was to investigate objectively and quantitatively the effects of the application of repeated focal muscle vibration (fMV) associated with neurocognitive exercise on a 46-year-old patient with spastic paraparesis secondary to the surgical removal of a C5-C6 ependymoma.

Methods: We have evaluated gait parameters, spasticity, and pain with clinical scales. We have applied focal muscle vibration on quadriceps femoris, hamstrings, gastrocnemius, and iliopsoas muscles bilaterally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!